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Foreword

The 14th International Workshop on Confluence (IWC 2025) is held on September 2–3, 2025, in Leipzig,
Germany, co-located with the 20th International Workshop on Termination (WST 2025).

Confluence, as a general notion of determinism, is an essential property of rewrite systems and has
emerged as a crucial concept for many applications. However, the confluence property is also relevant
to various further areas of rewriting, such as completion, commutation, termination, modularity, and
complexity. The International Workshop on Confluence was created as a forum to discuss all these
aspects, as well as related topics, implementation issues, and new applications.
IWC 2025 continues this tradition. The present report comprises seven regular submissions, the

abstracts of two invited talks by Salvador Lucas and Vincent van Oostrom, and the abstract of an
IWC/WST joint invited talk by Aart Middeldorp, as well as descriptions of tools participating in the
14th Confluence Competition (CoCo 2025). The contributions in these proceedings reflect the wide scope
of current research on confluence, ranging from new confluence criteria and novel confluence-related prop-
erties over formalization of confluence results to implementation aspects and applications. At the same
time, the spectrum of rewrite formalisms (first- as well as higher-order, conditional rewriting, rewriting
under strategies) used to model problems from different application areas underlines the importance of
confluence for various domains.
The renewed interest in confluence research in the last decade resulted in a variety of novel approaches,

which were also implemented in powerful tools that compete in the annual confluence competition. The
second part of this report devoted to CoCo 2025 provides a general overview as well as system descriptions
of all competition entrants.

IWC 2025 was made possible by the commitment of many people who contributed to the submissions,
the preparation and the program of the workshop, as well as the confluence competition. These include
authors of papers and tools, committee members, external reviewers, and the organizers of CoCo, as well
as the local organizers. Their hard work is very much appreciated.

Raúl Gutiérrez and Naoki Nishida Valencia and Nagoya, 31 August 2025
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Confluence of Conditional Rewriting Modulo∗

Salvador Lucas

DSIC & VRAIN, Universitat Politècnica de València, Spain
slucas@dsic.upv.es

Abstract

Sets of equations E play an important computational role in rewriting-based systems
R by defining an equivalence relation =E inducing a partition of terms into E-equivalence
classes on which rewriting computations, denoted →R/E and called rewriting modulo E
[1, 8, 3, 7, 4], are issued. This paper investigates confluence of -→R/E , usually called E-
confluence, for conditional rewriting-based systems, where rewriting steps are determined
by conditional rules. We rely on Jouannaud and Kirchner’s framework [5] to investigate
confluence of an abstract relation R modulo an abstract equivalence relation E on a set A.
We show how to particularize the framework to be used with conditional systems. Then,
we show how to define appropriate finite sets of conditional pairs to prove and disprove
E-confluence [6]. Our results apply to well-known classes of rewriting-based systems. In
particular, to Equational (Conditional) Term Rewriting Systems [2].

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Code Optimization And Finite Church-Rosser
Theorems. In Randall Rustin, editor, Design and Oprimization of Compilers, New York, March
29-30 1971, volume 5 of Courant Computer Science Symposium, pages 89–105. Prentice-Hall, 1972.

[2] Francisco Durán and José Meseguer. On the church-rosser and coherence properties of conditional
order-sorted rewrite theories. J. Log. Algebraic Methods Program., 81(7-8):816–850, 2012.

[3] Gérard P. Huet. Confluent Reductions: Abstract Properties and Applications to Term Rewriting
Systems. J. ACM, 27(4):797–821, 1980.

[4] Jean-Pierre Jouannaud. Confluent and coherent equational term rewriting systems: Application to
proofs in abstract data types. In Giorgio Ausiello and Marco Protasi, editors, CAAP’83, Trees in
Algebra and Programming, 8th Colloquium, Proceedings, volume 159 of Lecture Notes in Computer
Science, pages 269–283. Springer, 1983.

[5] Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a set of equations.
SIAM J. Comput., 15(4):1155–1194, 1986.

[6] Salvador Lucas. Confluence of Conditional Rewriting Modulo. In Aniello Murano and Alexandra
Silva, editors, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024), volume 288
of Leibniz International Proceedings in Informatics (LIPIcs), pages 37:1–37:21, Dagstuhl, Germany,
2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[7] Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some equational theories.
J. ACM, 28(2):233–264, 1981.

[8] Ravi Sethi. Testing for the Church-Rosser Property. J. ACM, 21(4):671–679, 1974.

∗Partially supported by MCIN/AEI project PID2021-122830OB-C42 funded by
MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” and by the grant
CIPROM/2022/6 funded by Generalitat Valenciana.
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Conway’s Game of Life and other orthogonal rewrite

systems

Vincent van Oostrom

University of Sussex, UK
Vincent.van-Oostrom@sussex.ac.uk

We show how Conway’s Game of Life (GoL) can be modelled by means of orthogonal graph
rewriting. More precisely, we model GoL by means of a graph rewrite system where each cell of
the grid is represented by a node having 8 ports, each linked to one of its 8 neighbouring nodes. A
rewrite rule then lets a node cyclically rotate its principal port to the next (either widdershins or
deosil) port while updating its alive-neighbour-count. After a full rotation, its state is updated
accordingly. We show this yields a graph rewrite system (GRS) where computing the next
GoL-iteration may be achieved in 8 ticks by means of what we call ©locksteps better known
in rewriting as full multisteps contracting all redex-patterns in the graph in parallel. The GRS
being orthogonal liberates one from having to perform ©locksteps only, to always contract all
redex-patterns: orthogonality makes that redex-patterns may be contracted asynchronously,
even one at the time, need not be contracted in lockstep. There are no clogsteps (so to speak),
making the modelling ideally suited for implementation on GPUs.

In the second part of the presentation we show in what sense the graph rewrite system used
to model GoL in the first part is orthogonal. We show it constitutes a so-called Interaction Net
(IN) and that a (single) step from graph G to graph H with respect to rule rule ρ : L→ R can
be decomposed into three phases:

1. the matching phase, an SC-expansion GSC ↞ C[L] exhibiting the to-be-replaced sub-
structure L within G;

2. the replacement C[L] → C[R] of the exihibited substructure L, left-hand side of rule ρ,
by its right-hand side R;

3. the substitution phase, an SC-reduction C[R] ↠SC H plugging-in the substructure R
yielding H.

Here SC stands for Substitution Calculus, the calculus used for abstracting subgraphs into
variables and substituting for them again (matching and substitution). In the case of INs the
SC is particularly simple, and consists essentially in managing indirection nodes. We exemplify
this decomposition extends to term rewrite systems (TRSs; having the simply typed λαβη-
calculus as SC) and to term graph rewrite systems (TGRSs; having an SC, the ж-calculus,
based on sharing), putting INs on a par with orthogonal TRSs and orthogonal TGRSs, thereby
unlocking the theory of orthogonality to GoL and other cellular automata. For instance, that
INs are confluent, even has least upperbounds, is an immediate consequence of orthogonality
(confluence-by-parallelism).

References: there being an abundance of literature on Game of Life and on Interaction
Nets, we only give references to the lesser-known approach to structured rewriting by means of
Substitution Calculi: [2], [4], [1], and [3].
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Termination and Confluence: Remembering Hans Zantema

Aart Middeldorp

University of Innsbruck, Austria
aart.middeldorp@uibk.ac.at

In this presentation I give an incomplete overview of the many contributions of Hans
Zantema1 to termination and confluence. Several of these were presented at earlier workshops
on termination2 and confluence,3 and I include a biased overview of the development of these
workshops and associated competitions [1, 2].

References

[1] Jürgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann, and Akihisa Yamada. The
Termination and Complexity Competition. Proc. 25th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, volume 11429 of LNCS, pages 156–166,
2019. doi: 10.1007/978-3-030-17502-3 10.

[2] Aart Middeldorp, Julian Nagele, and Kiraku Shintani. CoCo 2019: Report on the Eighth Con-
fluence Competition. International Journal on Software Tools for Technology Transfer, 2021.
doi: 10.1007/s10009-021-00620-4.

1https://hzantema.win.tue.nl/
2https://termination-portal.org/wiki/WST
3http://cl-informatik.uibk.ac.at/iwc/
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Improving Confluence Analysis for LCTRSs∗

Jonas Schöpf and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Innsbruck, Tirol, Austria
{jonas.schoepf,aart.middeldorp}@uibk.ac.at

Abstract

We lift two well-known confluence techniques—the redundant rules technique and the
reduction method—from term rewrite systems to logically constrained term rewrite sys-
tems. We establish sufficient criteria for both techniques in the constrained setting, in-
creasing flexibility of confluence analysis.

1 Introduction
Confluence is a fundamental property of rewrite systems that ensures unique results of rewriting,
independent of the order in which rewrite rules are applied. Proving confluence is thus central
to ensure unique computations and has applications in areas such as programming language
semantics, formal verification, and theorem proving. While confluence of term rewrite systems
(TRSs) has been extensively studied, for logically constrained rewrite systems (LCTRSs)—an
extension that incorporates logical constraints into rules—only in recent years there was notable
progress. This includes several well-known critical pair criteria like strong closedness [5] or
development closedness [7]. Recently, a criterion to show non-confluence of LCTRSs, based on
finding a non-joinable constrained critical pair, was introduced in [6]. A key challenge in the
confluence analysis of LCTRSs lies in efficient automation of the aforementioned methods. This
is especially difficult because existing techniques lack support for modular reasoning. However,
precisely those methods that provide modularity for confluence analysis of TRSs have shown
to significantly improve automation.

In this paper we extend two transformation techniques for TRSs, redundant rules [4] and
the reduction method [8], to LCTRSs. We expect that automating these will improve the
performance of LCTRS confluence tools.

2 Preliminaries
Due to space constraints, we assume familiarity with term rewriting and recall only key notions
for LCTRSs. For background on TRSs and LCTRSs, see [1] and [7], respectively. We assume
a many-sorted signature F = Fte ∪ Fth and a non-empty set of values Val where Fte ∩ Fth ⊆
∅ and Val ⊆ Fth. A constrained rewrite rule is a triple ℓ → r [φ] where ℓ, r ∈ T (F ,V)
are terms of the same sort such that root(ℓ) ∈ Fte \ Fth and φ is a constraint. We denote
the set Var(φ) ∪ (Var(r) \ Var(ℓ)) of logical variables in ℓ → r [φ] by LVar(ℓ → r [φ]). A
constrained rewrite rule is left-linear if non-logical variables in the left-hand side occur at most
once. A substitution σ is said to respect a rule ℓ → r [φ], denoted by σ ⊨ ℓ → r [φ], if
Dom(σ) ⊆ Var(ℓ) ∪ Var(r) ∪ Var(φ), σ(x) ∈ Val for all x ∈ LVar(ℓ → r [φ]), and [[φσ]] = ⊤.
Moreover, a constraint φ is respected by σ, denoted by σ ⊨ φ, if σ(x) ∈ Val for all x ∈ Var(φ)
and [[φσ]] = ⊤. We call f(x1, . . . , xn) → y [y = f(x1, . . . , xn)] with a fresh variable y and

∗This research is funded by the Austrian Science Fund (FWF) project I 5943-N.
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Improving Confluence Analysis for LCTRSs J. Schöpf and A. Middeldorp

f ∈ Fth \ Val a calculation rule. The set of calculation rules is denoted by Rca. Those rules
are not included in R, but we define Rrc as the union of R and Rca. A rewrite step s →R t
satisfies s|p = ℓσ and t = s[rσ]p for some position p, constrained rewrite rule ℓ→ r [φ] in Rrc,
and substitution σ such that σ ⊨ ℓ→ r [φ].

A constrained term is a pair s [φ] consisting of a term s and a constraint φ. Two constrained
terms s [φ] and t [ψ ] are equivalent, denoted by s [φ] ∼ t [ψ ], if for every substitution γ ⊨ φ
with Dom(γ) = Var(φ) there is some substitution δ ⊨ ψ with Dom(δ) = Var(ψ) such that
sγ = tδ, and vice versa. If s|p = ℓσ for some constrained rewrite rule ρ : ℓ → r [ψ ] ∈ Rrc,
position p, and substitution σ such that σ(x) ∈ Val∪Var(φ) for all x ∈ LVar(ρ), φ is satisfiable
and φ⇒ ψσ is valid then s [φ]→R s[rσ]p [φ]. The rewrite relation ∼→R on constrained terms
is defined as ∼ · →R · ∼. We write s [φ] ∼→⩾p t [ψ ] if the position in the rewrite step is below
position p.

Given a constrained rewrite rule ρ : ℓ → r [φ], we write ECρ for
∧{x = x | x ∈ EVar(ρ)}.

Here EVar(ρ) denotes the set Var(r) \ (Var(ℓ) ∪ Var(φ)) of extra variables of ρ. An overlap of
an LCTRS R is a triple ⟨ρ1, p, ρ2⟩ with rules ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ], satisfying
the following conditions:

(1) ρ1 and ρ2 are variable-disjoint variants of rewrite rules in Rrc,

(2) p ∈ PosF (ℓ2),

(3) ℓ1 and ℓ2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1) ∪ LVar(ρ2),

(4) φ1σ ∧ φ2σ is satisfiable, and

(5) if p = ϵ then ρ1 and ρ2 are not variants, or Var(r1) ⊈ Var(ℓ1).
In this case we call

ℓ2σ[r1σ]p ≈ r2σ [φ1σ ∧ φ2σ ∧ ψσ ]

a constrained critical pair obtained from the overlap ⟨ρ1, p, ρ2⟩. Here ψ = ECρ1 ∧ECρ2 . The set
of all constrained critical pairs of R is denoted by CCP(R). A constrained critical pair s ≈ t [φ]
is trivial if sσ = tσ for every substitution σ with σ ⊨ φ.

We conclude this section by recalling a transformation from [7, Definition 1] which transforms
an LCTRS R to a (possibly infinite) TRS R. Note that after applying this transformation we
obtain that →R and →R coincide for an LCTRS R ([7, Lemma 1]).

Definition 1. Given an LCTRS R, the TRS R consists of the following rules: ℓτ → rτ for all
ρ : ℓ→ r [φ] ∈ Rrc with τ ⊨ ρ and Dom(τ) = LVar(ρ).

3 Redundant Constrained Rules
In this section we lift the redundant rules technique [4] to the constrained setting. The idea
is to remove rules that hinder the confluence proof or to add rules that make other confluence
methods applicable. Two LCTRSs R and R′ are said to share the same theory if they differ
only in Fte and their respective rule sets R and R′. We denote this by R ≃ R′. For the
remainder of this section, we assume R ≃ S for the LCTRSs R and S.

Definition 2. A rule ρ : ℓ→ r [φ] ∈ R is redundant if

ℓ ≈ r [φ ∧ ECρ ] ∼→∗
R\{ρ},⩾1 ℓ

′ ≈ r′ [ψ ]

6



Improving Confluence Analysis for LCTRSs J. Schöpf and A. Middeldorp

for some trivial ℓ′ ≈ r′ [ψ ]. A set of constrained rules S is redundant in R if all rules ℓ →
r [φ] ∈ S are redundant in R.

Example 3. Consider an LCTRS R over the theory of integers and the constrained rewrite
rule ρ : f(x + x) → f(z) [z = 2 · x] ∈ R. This rule is redundant as witnessed by the following
rewrite sequence using the calculation rule x′ + y′ → z′ [z′ = x′ + y′ ]:

f(x+ x) ≈ f(z) [z = 2 · x] ∼ f(x+ x) ≈ f(z) [z = 2 · x ∧ z′ = x+ x]

→R\{ρ},⩾1 f(z′) ≈ f(z) [z = 2 · x ∧ z′ = x+ x]

The resulting constrained equation is clearly trivial and hence Definition 2 is satisfied.

A perhaps non-obvious fact is that the removal of redundant rules can actually transform a
non-left-linear LCTRS into a left-linear one. Since most confluence criteria require left-linearity,
they may then become applicable.

Theorem 4. If a set of constrained rules S is redundant in an LCTRS R then R is confluent
if and only if R∪ S is confluent.

Proof. We first show →∗
R = →∗

R∪S . The inclusion →∗
R ⊆ →∗

R∪S is trivial. For the reverse
inclusion, it suffices to show→S ⊆ →∗

R. Consider a term s, a constrained rule ρ : ℓ→ r [φ] ∈ S,
a position p and a substitution σ ⊨ ρ such that s = s[ℓσ]p →S s[rσ]p. By redundancy of ρ
we obtain ℓ ≈ r [φ] ∼→∗

R\{ρ},⩾1 ℓ′ ≈ r′ [ψ ] for a trivial ℓ′ ≈ r′ [ψ ]. Repeated application
of [7, Lemma 2] gives ℓσ →∗

R\{ρ} ℓ
′γ and rσ = r′γ for a substitution γ ⊨ ψ. Moreover, by

triviality [5, Definition 5] we obtain ℓ′γ = r′γ and thus ℓσ →∗
R\{ρ} ℓ

′γ = r′γ = rσ. Closure
under contexts yields s = s[ℓσ]p →∗

R\{ρ} s[rσ]p. Hence →S ⊆ →∗
R as desired.

From the proof of this theorem it follows that →R = →R\{ρ} in Example 3. By changing
reduction to conversion in the definition of redundant rules, we obtain the following variant.

Theorem 5. If R is confluent, ℓ ≈ r [φ∧ECρ ] ∼←→∗
R\{ρ},>ϵ ℓ

′ ≈ r′ [ψ ] and ℓ′ ≈ r′ [ψ ] is trivial
for every rule ρ : ℓ→ r [φ] ∈ S then R∪ S is confluent.

Proof. We first show →S ⊆ ↔∗
R. Let s = s[ℓσ]p →S s[rσ]p for some rule ρ : ℓ → r [φ] ∈ S,

position p and substitution σ ⊨ ρ. The assumption on ρ yields ℓ ≈ r [φ] ∼←→∗
R′,>ϵ ℓ

′ ≈ r′ [ψ ]
for some trivial ℓ′ ≈ r′ [ψ ] and R′ = R \ {ρ}. Repeated application of [9, Lemma 6] (and its
symmetric version) yields ℓσ ↔∗

R′ ℓ′γ and rσ ↔∗
R′ r′γ for some γ ⊨ ψ. Triviality of ℓ′ ≈ r′ [ψ ]

gives ℓ′γ = r′γ and thus ℓσ ↔∗
R′ ℓ′γ = r′γ ↔∗

R′ rσ. Hence s = s[ℓσ]p ↔∗
R′ s[rσ]p by closure

under contexts. From →S ⊆ ↔∗
R we obtain ↔∗

R∪S = ↔∗
R and thus ↔∗

R∪S ⊆ ↓R ⊆ ↓R∪S by
the confluence of R. Hence R∪ S is confluent.

In the following example we illustrate that this method indeed strengthens confluence anal-
ysis for LCTRSs.

Example 6. Consider the LCTRS R over the theory of integers with the rules

α : f(x, y)→ x+ y [x > 0] β : f(x, y)→ d(x, y) [x = 2 ∗ y ∧ y > 0]

γ : f(x, y)→ f(y, x) [x ⩽ 0] δ : d(x, y)→ y + x

Note that R is left-linear, non-terminating and admits the two constrained critical pairs

x+ y ≈ d(x, y) [x > 0 ∧ x = 2 ∗ y ∧ y > 0] d(x, y) ≈ x+ y [x = 2 ∗ y ∧ y > 0 ∧ x > 0]

7
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Those are neither both strongly closed ([5, Definition 6]), both almost development closed
([7, Definition 6]) nor both 1-parallel closed ([7, Definition 11]). Hence none of the known
confluence criteria for LCTRSs [3,5,7] apply here. Let us denote the constraint x = 2∗y∧y > 0
by φ. We obtain the conversion of β

f(x, y) ≈ d(x, y) [φ] ∼←→R\{β},>ϵ x+ y ≈ d(x, y) [φ]
∼←→R\{β},>ϵ x+ y ≈ y + x [φ]
∼←→R\{β},>ϵ z ≈ y + x [φ ∧ z = x+ y ]
∼←→R\{β},>ϵ z ≈ z′ [φ ∧ z = x+ y ∧ z′ = y + x]

for which the last constrained equation is trivial. The LCTRS R \ {β} is orthogonal and
therefore confluent. By Theorem 5 we conclude the confluence of R.

Implementation A prototype implementation following the results of this section is available
in the tool crest [6]. The following heuristics, which are inspired by [4, Section 5], are currently
used; here ◦−→ denotes the multi-step rewrite relation [7, Definition 5]:

(1) for every s ≈ t [φ] ∈ CCP(R) if it satisfies s ≈ t [φ] ◦−→2
⩾1 · ◦−→2

⩾2 u ≈ v [ψ ] for a trivial
u ≈ v [ψ ] then we add {s→ u [φ], t→ v [φ]} to the rules,

(2) for every ℓ→ r [φ] ∈ R if r [φ ∧ ECρ ] ◦−→2 r′ [ψ ] then we add the new rule ℓ→ r′ [φ] to
the rules,

(3) remove the rule ρ : ℓ→ r [φ] from the set of rules if

ℓ ≈ r [φ ∧ ECρ ] ◦−→2
R\{ρ},⩾1 · ◦−→2

R\{ρ},⩾2 u ≈ v [ψ ]

for a trivial u ≈ v [ψ ].

Note that the first two heuristics are based on Theorem 4, while the last is based on Theorem
5. The confluence problem in Example 6 can be solved by (3).

4 Reduction Method for LCTRSs
In this section, we consider compositional confluence analysis for LCTRSs, inspired by the work
on TRSs by Shintani and Hirokawa [8]. Our main focus is on the reduction method, which,
as the name implies, seeks to reduce a TRS R to a smaller subsystem C while preserving the
confluence property.

Let us recall necessary notions and results from [8]. A TRS R is convertible by a TRS C if
C ⊆ R and for all s ≈ t ∈ PCP(R) we have s ↔∗

C t. Here PCP(R) denotes the set of parallel
critical pairs of R.

Theorem 7 (Theorem 5.4 [8]). A left-linear TRS R is confluent if it is convertible by some
confluent TRS C.

The results in this section rely on parallel critical pairs. The following example shows why
normal critical pairs do not suffice in Theorem 7.

Example 8. Consider the TRS R′ of [2, Example 8] consisting of the rewrite rules

ρ1 : f(a, a)→ b ρ2 : a→ c ρ3 : f(c, x)→ f(x, x) ρ4 : f(x, c)→ f(x, x)

8
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We have CP(R′) = {f(a, c) ≈ b, f(c, a) ≈ b, f(c, c) ≈ f(c, c)} ⊆ →∗
C for C = {ρ1, ρ3, ρ4}. The

subsystem C is weakly orthogonal and thus confluent. However, R′ is not confluent as witnessed
by f(c, c) ∗

R′← f(a, a)→R′ b. Note that f(c, c) ≈ b ∈ PCP(R′).

An LCTRS C is a subsystem of an LCTRS R, written as C ⊑ R, if C ≃ R and C ⊆ R.
Therefore, these LCTRSs share the same theory and thus have identical mappings, interpreta-
tion functions, theory symbols, values, and calculation rules.

Definition 9. A constrained parallel critical pair s ≈ t [φ] is convertible by an LCTRS C if
s ≈ t [φ] ∼←→∗

C,⩾1 s
′ ≈ t′ [ψ ] for some trivial s′ ≈ t′ [ψ ]. An LCTRS R is convertible by C if

C ⊑ R and all constrained parallel critical pairs CPCP(R) of R are convertible by C.

Example 10. The constrained critical pairs in Example 6 are the only constrained parallel
critical pairs. Both are convertible by C = {α, γ, δ} in a single step, e.g.,

x+ y ≈ d(x, y) [x > 0 ∧ φ]→C x+ y ≈ y + x [x > 0 ∧ φ]

Theorem 11. A left-linear LCTRS R is confluent if it is convertible by a confluent LCTRS
C.

Proof. Consider a left-linear LCTRS R that is convertible by a confluent LCTRS C. So C ⊆ R.
Employing the transformation in Definition 1 we obtain TRSs R and C with →R = →R and
→C = →C . Hence C is confluent and R is left-linear. We obtain C ⊆ R from C ⊆ R. We
show that R is convertible by C. For each parallel critical pair s ≈ t ∈ PCP(R) there exists a
constrained parallel critical pair s′ ≈ t′ [φ′ ] ∈ CPCP(R) with a substitution σ such that s′σ = s,
t′σ = t and σ ⊨ φ′ by [7, Theorem 2]. Convertibility yields s′ ≈ t′ [φ] ∼←→∗

C,⩾1 u ≈ v [ψ ] for some
trivial u ≈ v [ψ ]. Repeatedly applying [5, Lemma 2] to the ∼→⩾1,C steps (in both directions)
yields that for all substitutions σ ⊨ φ there exists a substitution γ ⊨ ψ such that s′σ ↔∗

C uγ
and t′σ = vγ. Triviality yields uγ = vγ and thus s = s′σ ↔∗

C uγ = vγ = t′σ = t. According to
Theorem 7 R is confluent which implies the confluence of R.

To state the next result, we recall some notation from [8]. For TRSsR and C we writeR↾C for
the TRS {ℓ→ r ∈ R | Fun(ℓ) ⊆ Fun(C)}. Here Fun(C) = {f ∈ Fun(ℓ) ∪Fun(r) | ℓ→ r ∈ C}.
Below we lift the following result of [8] to the constrained setting.1

Theorem 12. If R↾C ⊆ →∗
C ⊆ →∗

R and R is confluent then C is confluent.

Definition 13. For a term s we define the set of term symbols Funte(s) in s as Fun(s) \ Fth.
Given two LCTRSs R and C we define R↾C = {ℓ → r [φ] ∈ R | Funte(ℓ) ⊆ Funte(C)}. Here
Funte(C) =

⋃ {Funte(ℓ) ∪ Funte(r) | ℓ → r [φ] ∈ C}. We say that R↾C is simulated by C if
every ρ : ℓ→ r [φ] ∈ R↾C satisfies ℓ ≈ r [φ ∧ ECρ ] ∼→∗

C,⩾1 u ≈ v [ψ ] for some trivial u ≈ v [ψ ].

Example 14. Consider the LCTRS R over the theory of integers consisting of the single rule
f(x)→ a [x = 1]. We have R = {f(1)→ a}, Funte(R) = {f, a} and Fun(R) = {f, a, 1}.

Lemma 15. If R↾C is simulated by C and C ⊑ R then R↾C ⊆ →∗
C.

Proof. Let R and C be LCTRSs such that C ⊑ R and R↾C is simulated by C. Consider
ρ : ℓ→ r ∈ R↾C . Clearly ρ ∈ R and Fun(ℓ) ⊆ Fun(C). By Definition 1 there exist a constrained
rewrite rule ρ′ : ℓ′ → r′ [φ′ ] ∈ Rrc and a substitution σ such that ℓ = ℓ′σ, r = r′σ and σ ⊨ ρ′

1The condition →∗
C ⊆ →∗

R is missing in [8, Theorem 8.3] but required: https://www.jaist.ac.jp/
~hirokawa/materials/24lmcs-errata.html.
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with Dom(σ) = LVar(ρ′). Note that if ρ′ ∈ Rca then trivially C simulates ρ′ as C ⊑ R.
Hence it remains to show ρ′ ∈ R↾C for ρ′ ∈ R, which amounts to Funte(ℓ′) ⊆ Funte(C).
Note that σ(x) ∈ Val for all variables x ∈ LVar(ρ′). Therefore Funte(ℓ′) = Funte(ℓ′σ) =
Fun(ℓ) \ Fth ⊆ Fun(C) \ Fth = Funte(C). It remains to show that ℓ →∗

C r. Our assumption
yields ℓ′ ≈ r′ [φ′ ] ∼→∗

C,⩾1 u ≈ v [ψ ] for some trivial u ≈ v [ψ ]. From [7, Lemma 2] we obtain
a substitution γ ⊨ ψ such that ℓ′σ →∗

C uγ and r′σ = vγ. Triviality yields vγ = uγ. We have
→C =→C by [7, Lemma 1] and therefore ℓ = ℓ′σ →∗

C uγ = r.

Corollary 16. If R↾C is simulated by C, C ⊑ R and R is confluent then C is confluent.

Proof. Lemma 15 yields R↾C ⊆ →∗
C . From →R =→R we obtain the confluence of R. Hence C

is confluent by Theorem 12. Using →C =→C we obtain the confluence of C.

Corollary 17. If a left-linear LCTRS R is convertible by an LCTRS C and R↾C is simulated
by C then R is confluent if and only if C is confluent.

We have shown that the reduction method works with one particular compositional conflu-
ence method. In [8] several additional methods are discussed. We expect that these can also
be lifted to the constrained setting.

Example 18. Consider the LCTRS R of Example 6. An obvious choice for C in order to apply
Corollary 17 are the rules {α, γ, δ} assuming C ⊑ R. Clearly R is left-linear and in Example
10 we have seen that R is convertible by C. However, R↾C is not simulated by C and there does
not exist any other C with C ⊑ R satisfying this.

Comparing Theorem 12 and Corollary 16, a natural question is whether the condition C ⊑ R
in the latter can be weakened to →∗

C ⊆ →∗
R together with the assumption that C and R share

the same theory. We leave this as future work. Extending crest with the results in this section
is another topic for future work.
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Abstract

We generalize the concept of critical pairs from Nipkow’s pattern rewrite systems to
higher-order rewrite systems where the left-hand sides of rules can be deterministic higher-
order patterns.

1 Introduction

The goal of this paper is to establish a more general critical pair lemma (Lemma 2) for higher-
order rewrite systems (HRSs) à la Nipkow [11]. In [8], such a result is given for pattern rewrite
systems (PRSs) which are a restriction of HRSs such that the rules’ left-hand sides belong to
a class of lambda terms called patterns which was put forward by Miller [9]. Unlike general
higher-order unification, which is undecidable and not unitary [12], unification of patterns
is decidable and produces a most general unifier if successful [9]. Furthermore, rewriting with
pattern rewrite rules cannot introduce variables [8], which is essential for a well-behaved rewrite
system in particular if it should be terminating. While PRSs are favorable from these points
of view, they are considerably less expressive than HRSs. In order to alleviate this trade-off,
we define in Section 3 a class of HRSs based on deterministic higher-order patterns (DHP)
[14] which strictly includes PRSs. We call the resulting formalism deterministic higher-order
pattern rewrite systems (DPRSs). All example DPRSs given in this paper go beyond the
expressive power of PRSs. For DHPs we still get a deterministic matching algorithm, but neither
decidability nor finiteness of the corresponding unification problem has been established to the
best of our knowledge. There is the closely related class of functions-as-constructors higher-
order unification (FCU) which is decidable and unitary [7]. However, we will show why the
imposed restrictions are not practical for critical pair computation in Example 3. Hence, the
main result of this paper (Theorem 1) yields a decision procedure for confluence of terminating
DPRSs if unification of DHPs is decidable and finite, which we want to settle in future work.

2 Preliminaries

Given a binary relation R, R+ and R∗ denote its transitive and transitive-reflexive closure,
respectively. For a binary relation → we write ←, ↔, →∗ for its inverse, symmetric closure
and transitive-reflexive closure, respectively. In that case, we also define the joinability relation
↓ =→∗ · →∗ . Throughout this text, we will denote a sequence a1, . . . , an by an where n ⩾ 0 and
the corresponding set by {an}. For every a, a0 represents the empty sequence which we denote
by (). We implicitly enclose sequences in parentheses whenever it is necessary. For a binary
relation R, an R bn abbreviates a1 R b1, . . . , an R bn. Similarly, f(an) denotes the pointwise
application of the function f to an. Given two sequences an and bm, their concatenation is
written as an, bm.

12
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In this paper, we consider Nipkow’s HRSs [8] which operate on simply-typed lambda terms
[1,2]. Let S be a set of sorts (a,b). We use a flattened representation of simple types, so the set
T of types (σ,τ) is defined as follows: S ⊆ T and if σ1, . . . , σn ∈ T and s ∈ S then σn → s ∈ T
where we identify () → s with s. Since HRSs only work on lambda terms in βη-long normal
form, we will use a βη-free formulation of terms and substitutions based on [3, 4]. This way,
we never have to speak about β-reduction, η-reduction and η-expansion in rewriting as every
term is in its canonical form at all times. Suppose there is an infinite set V of typed variables
(x, y, z, w) and a set F of typed function symbols (c, d, f , g), such that V, F , S and {→}
are disjoint and there are infinitely many variables of each type. A head h is either a function
symbol or a variable and we write h : σ to denote that it has type σ. The following inference
rules define the set Term(F ,V, σ) of terms (s, t, u, v) of type σ

h : σn → a ∈ F ∪ V tn ∈ Term(F ,V, σn)
h(tn) ∈ Term(F ,V, a)

t ∈ Term(F ,V, a) xn : σn ∈ Vn
xn.t ∈ Term(F ,V, σn → a)

where we use Term(F ,V, σn) as a shorthand for Term(F ,V, σ1) × · · · × Term(F ,V, σn). We
abbreviate h() by h and follow the convention that postfix operations ♢ bind stronger than
binders in terms, so xn.t♢ = xn.(t♢). The set Term(F ,V,S) denotes the set of all terms which
coincides with the set of well-typed lambda terms over F and V in βη-long normal form. As
for function symbols and variables, we denote that a term s has type σ by s : σ. Given a term
s, its set of free (FV(s)) and bound variables (BV(s)) are defined as usual.

We view terms modulo renaming of bound variables (α-renaming). Hence, we may assume
that no variable occurs both free and bound in any term. Note that V ⊆ Term(F ,V,S) does
not hold as terms are always in canonical form. The function ↑ takes a variable and returns its
canonical form by performing η-expansion: x↑ = yn.x(yn↑) whenever x : σn → a, yn : σn and
x /∈ {yn}.

Finite mappings from variables to terms of the same type are called substitutions (θ, γ, δ,
µ). Given a substitution θ = {xn 7→ tn} , its domain and image are defined as Dom(θ) =
{xn} and Im(θ) = {tn}, respectively. The free variables introduced by a substitution θ are
defined as the set FV(θ) =

⋃ {FV(t) | t ∈ Im(θ)}. A substitution is called a renaming if
Im(θ) ⊆ {x↑ | x ∈ V} and the corresponding mapping from V to V is bijective. We often
refer to bijective mappings from V to V as variable renamings. Since terms are always in their
canonical form, the application of a substitution θ to a term t (written in postfix notation
tθ) is defined hereditarily by implicitly performing β-reduction [6]: x(tn)θ = u{xn 7→ tnθ} if
x 7→ xn.u ∈ θ, h(tn)θ = h(tnθ) if h /∈ Dom(θ) and (xn.t)θ = xn.tθ. Note that we always
assume that (Dom(θ) ∪ FV(θ)) ∩ BV(t) = ∅ by employing α-renaming. Hence, tθ represents
the capture-avoiding application of θ to the free variables of t. We say that a term s matches
a term t if there exists a substitution θ such that sθ = t. Moreover, if sθ = tθ then θ is a
unifier of s and t. Given θ = {xn 7→ sn} and δ = {ym 7→ tm}, we define their composition
as θδ = {xn 7→ snδ} ∪ {yj 7→ tj | 1 ⩽ j ⩽ m and yj /∈ {xn}}. A substitution θ is at least as
general as a substitution δ, denoted by θ ·⩾β δ, if there exists a substitution µ such that θµ = δ.

Given a term s, a sequence of terms xn and a set of variables W we define the xn-lifter of
s away from W to be the substitution {x 7→ ym.ρ(x)(xn, ym) | x : τm → a ∈ FV(s)} where ρ is
a variable renaming away from W , ρ(x) : (σn, τm)→ a, ym : τm and xn : σn.

A position (p,q,r) is a string over N where ϵ denotes the empty string which is often called
the root position. We write pq for the concatenation of two positions p and q and p ⩽ q if p
is a prefix of q, i.e., there exists a position r such that pr = q. In that case, we say that p is
above q and q is below p. If neither p ⩽ q nor q ⩽ p then p and q are parallel, written p ∥ q.
The set Pos(s) contains all positions of a term s. Given a position p ∈ Pos(s), s|p denotes the
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abstracted subterm at position p which is defined inductively as follows: s|ϵ = s, h(tn)|ip = ti|p
and (xn.t)|p = xn.t|p. In particular, the scope of bound variables is not discarded, so the
definition of abstracted subterms is well-defined in the presence of α-renaming. If s|p = xn.t
we refer to xn as bv(s, p). Furthermore, we use s ⊵ t to denote that t is an abstracted subterm
of s and define s ▷ t as s ⊵ t and s ̸= t. A position p ∈ Pos(s) is called functional (denoted by
p ∈ PosF (s)) if the head of s|p is a function symbol. Finally, given p ∈ Pos(s) and a term xn.t
of the same type as s|p = xn.u we define s[xn.t]p as the result of replacing u by t in s. Note that
this would not be well-defined if we chose βη-normal forms as our canonical forms due to the
possible removal of variable occurrences through subterm replacement: For s = x.f(h(x), x),
s[x.c]1 = x.f(c, x) is η-reducible.

A pair of terms (ℓ, r) with ℓ, r : a can be seen as an equation (written ℓ ≈ r), or, if we
additionally assume that FV(r) ⊆ FV(ℓ) and the head of ℓ is not a variable, as a rule (written
ℓ → r). A higher-order equational system (HES) is a set of equations while a higher-order
rewrite system (HRS) is a set of rules. Every rule can be seen as an equation, so every HRS
is also an HES. We will exploit this by giving some general definitions only for HESs. Given
an HES E , its rewrite relation →E is defined as follows: There is a rewrite step s→E t if there
exist a equation ℓ ≈ r ∈ E , a substitution θ and a position p ∈ Pos(s) such that s|p = xn.ℓθ and
t = s[xn.rθ]p. Sometimes, we make the position p explicit by writing s →p

E t. Two equations
ℓ1 ≈ r1 and ℓ2 ≈ r2 are variants if there exists a renaming γ such that ℓ1γ = ℓ2 and r1γ = r2.
Our definition of HRSs is equivalent to the original one given in [8]. Finally, we say that an
HRS R is terminating if →R is well-founded and call R (locally) confluent if →∗

R · →∗
R ⊆ ↓R

( →R · →R ⊆ ↓R).

3 Deterministic Higher-Order Patterns

DHPs as introduced in [14] come with a deterministic matching problem as well as an algorithm
which computes matching substitutions in linear time. In order to simplify the presentation
of the following definition, we will resort to the usage of βη-normal forms. To that end, s↓η
denotes the η-normal form of a term s as a lambda term (employing the usual applicative
notation). Furthermore, let ▷ho be the higher-order subterm relation on lambda terms. (The
main difference from our subterm relation ▷ is that g(x) ⋫ g but g x ▷ho g.)

Definition 1. A term s is a deterministic higher-order pattern (DHP) if the following conditions
hold for all abstracted subterms yn.x(tm) with x /∈ {yn} and 1 ⩽ i ⩽ m: ∅ ̸= FV(ti) ⊆ {yn},
ti↓η ⋭ho tj↓η whenever i ̸= j, and ti↓η is not a lambda abstraction.

We are now ready to define a subclass of HRSs for which we will be able to obtain a critical
pair lemma. A deterministic higher-order pattern rewrite rule is a rewrite rule whose left-
hand side is a DHP. A deterministic higher-order pattern rewrite system (DPRS) is a set of
deterministic higher-order pattern rewrite rules. To the best of our knowledge, DPRSs have
not been considered in the literature. Note that like for PRSs, rewriting with DPRSs cannot
introduce variables since free variables are not nested in their left-hand sides. As opposed to
Miller’s pattern unification [9] or FCU [7], unification of DHPs is not unitary.

Example 1 (taken from [14]). Consider the sort a, the function symbol f : a → a as well as
the variables M,N : (a, a) → a. The terms x, y.M(f(x), f(y)) and x, y.f(N(y, x)) admit the
three unifiers {M 7→ z1, z2.z1, N 7→ z1, z2.z2}, {M 7→ z1, z2.z2, N 7→ z1, z2.z1} and {M 7→
z1, z2.f(Z(z1, z2)), N 7→ z1, z2.Z(f(z2), f(z1))} where Z : (a, a) → a is a fresh variable. Note
that all three unifiers are incomparable with respect to ·⩾β .
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A minimal complete set of unifiers U of two terms s and t satisfies the following conditions:
For all θ ∈ U , θ is a unifier of s and t. Furthermore, if δ is a unifier of s and t then θ ·⩾β δ for
some θ ∈ U . Finally, the elements of U are incomparable with respect to ·⩾β . Assuming that
minimal sets of unifiers of DHPs are finite and computable, the critical pair lemma stated in
the following section yields a decision procedure for confluence of terminating DPRSs.

4 Critical Peaks

In DPRSs, the free variables in left-hand sides of rules may be applied to arguments which con-
tain function symbols. Therefore, as opposed to higher-order rewriting with PRSs, in addition
to overlaps at function positions, overlaps at variable positions also have to be considered. To
the best of our knowledge, Hamana [5] provides the sole existing definition of critical pairs in
such a setting, albeit for the restricted class of second-order systems. The main challenge of
establishing a critical pair lemma for DPRSs is to give a complete characterization of overlaps
at variable positions using only a finite number of critical pairs.

Example 2. Consider the sorts a and b, the function symbols c : (a→ a)→ a, d : a, e : b→ a
f, g : a→ a, h : a→ b as well as the variables x : a and Z : a→ a. The DPRS R consisting of
the following rules

f(g(x))→ f(x) h(g(x))→ h(x) c(y.Z(g(y)))→ Z(d)

exhibits the local peak c(y.f(y)) →1
R c(y.f(g(y)))→ϵ

R f(d) which is not joinable. Following [5] we
could consider c(y.f(y)) ≈ f(d) to be a critical pair. However, the involved rules may also overlap
at some lower position in a given instance of Z, so in addition we have the non-joinable local peak
c(y.f(f(y))) →11

R c(y.f(f(g(y))))→ϵ
R f(f(d)). Hence, given a fresh variable Y ′ : a→ a which can

be instantiated by a function representing the concrete context, the choice of c(y.Y ′(f(y))) ≈
Y ′(f(d)) as critical pair seems to be more apt. Furthermore, considering a variable F : (a, a)→
a, the local peak c(y.F (f(y), g(y))) →11

R c(y.F (f(g(y)), g(y))) →ϵ
R F (f(d), d) is not captured

by this critical pair as c(y.Y ′(f(y))){Y ′ 7→ z.F (z, g(y))} = c(x.F (f(x), g(y))). Hence, the
original arguments of Z should be added to the arguments of the fresh variable introduced
in the critical pair. Using the fresh variable Z ′ : (a, a) → a, c(y.Z ′(f(y), g(y))) ≈ Z ′(f(d), d)
characterizes all non-joinable local peaks considered so far. By utilizing this strategy of using a
fresh variable as a placeholder for the context up to the actual overlap, we can now also provide
the critical pair c(y.Z ′′(h(y), g(y))) ≈ Z ′′(h(d), d) where Z ′′ : (b, a) → a is a fresh variable for
the non-joinable local peak c(y.e(h(y))) →11

R c(y.e(h(g(y)))) →ϵ
R e(h(d)) even though h(g(x))

and Z(g(x)) have different types. Note that despite R being a second-order system, all these
crucial refinements of the naive notion of critical pairs given initially are not present in [5],
rendering its local confluence result (Theorem 7.11) unsound: According to the definition given
there, c(y.f(y)) ≈ f(d) is the only critical pair of R. Following the same definition, the DPRS
R′ = R ∪ {c(y.f(y)) → f(d)} still only has one critical pair which is now joinable. Hence,
according to [5], R′ is locally confluent but actually this is not the case as the local peak
c(y.f(f(y))) →11

R′ c(y.f(f(g(y))))→ϵ
R′ f(f(d)) is still not joinable.

In the following, the considerations of the previous example are transformed into a formal
definition of critical pairs for DPRSs. We start by giving a definition of overlaps. For function
positions, we just have to adapt the the definition from PRSs for minimal complete sets of
unifiers instead of most general unifiers. For variable positions, we have to account for overlaps
which may occur at a lower position and therefore also at a different sort than the output sort
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of the variable under consideration. However, such overlaps only have to be considered when
an argument of the free variable which is not merely the canonical representation of a bound
variable is used in the unifier.

Definition 2. An overlap of a DPRS R is an octuple ⟨ℓ1 → r1, p, q, xn, δ, γ, U, ℓ2 → r2⟩
satisfying the following properties:

(i) ℓ1 → r1, ℓ2 → r2 ∈ R,
(ii) p ∈ Pos(ℓ2), bv(ℓ2, p) = xn and δ is an xn-lifter of ℓ1 away from FV(ℓ2),

(iii) U ′ is a minimal complete set of unifiers of xn.ℓ1δ and ℓ2γ|pq,
(iv) either (a) q = ϵ, γ = ∅, p ∈ PosF (ℓ2) and U = U ′, or (b) q = 1 and

• ℓ2|p = xn.y(sm) where y /∈ {xn} and {sm} ̸⊆ {xn↑},
• γ = {y 7→ ym.y

′′(y′(ym↑), ym↑)} where y′ : σm → b and y′′ : (b, σm) → a are fresh
variables assuming y : σm → a and ℓ1 : b

• U = U ′ \ U ′′ such that for all θ ∈ U ′′ ⊆ U , at least one of the following holds:

– if θ(y′) = ym.v then yi ∈ FV(v) implies si ∈ {xn↑} for all i,
– (xn.y

′(sm))θ ∈ {xn.si | 1 ⩽ i ⩽ m}
(v) if p = ϵ then ℓ1 → r1 and ℓ2 → r2 are not variants

Note that the second condition stated in the third item of property (iv)(b) guarantees that
overlaps at arguments of free variables are not considered as overlaps at these free variables.
The following example clarifies the differences from the previous definition with [5, Definition
7.7] which have not already been addressed.

Example 3. Consider the sort a, the function symbols c : (a→ a)→ a, d : a, f, g, h : a→ a as
well as the variables x : a and Z : (a, a)→ a. The DPRS R consisting of the following rules

f(g(x))→ x c(y.Z(g(y), h(y)))→ Z(d, d)

contains the overlap ⟨f(g(x)) → x, 1, 1, y, δ, γ, U, c(y.Z(g(y), h(y))) → Z(d, d)⟩ with δ = {x 7→
X ′(y)} and γ = {Z → z1, z2.Z

′′(Z ′(z1, z2), z1, z2)} where X ′ : a → a, Z ′ : (a, a) → a and
Z ′′ : (a, a, a) → a are fresh variables. For θ = {X ′ 7→ z.z, Z ′ 7→ z1, z2.f(z1)} ∈ U and
the instance where we map Z ′′ to z.z, this overlap gives rise to the non-joinable local peak
c(y.y) →1

R c(y.f(g(y))) →ϵ
R f(d). Note that since z2 /∈ FV(f(z1)), this would not be an overlap

according to [5, Definition 7.7]. Furthermore, we can see why FCU is not enough for our
purposes: The unification problem y.f(g(X ′(y))) ≈ y.Z ′(g(y), h(y)) does not satisfy the global
restriction of the FCU class as g(y) ▷ y. In [5], a solution for second-order systems is provided
by extending the FCU algorithm to this special case. Note that due to the usage of a lifter δ,
ordinary FCU cannot be used in many cases. In particular, even though lifters are not used
in [5], we cannot dispense of them: The unification problem y.f(g(x)) ≈ y.Z ′(g(y), h(y)) has
no solutions as we may not set θ(x) = y due to capture-avoidance. Furthermore, we want to
abstract over y since it prevents y from being in the domain of θ.

The upcoming result ensures that there exists a source term for overlaps. After that, we
transform overlaps into critical peaks which leads to the key definition of critical pairs.

Lemma 1. If ⟨ℓ1 → r1, p, q, xn, δ, γ, U, ℓ2 → r2⟩ is an overlap of R then ℓ2γθ[(xn.ℓ1δ)θ]pq =
ℓ2γθ for all θ ∈ U .
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Definition 3. Let ⟨ℓ1 → r1, p, q, xn, δ, γ, U, ℓ2 → r2⟩ be an overlap of a DPRS R and θ ∈ U .
By Lemma 1, ℓ2γθ[(xn.ℓ1δ)θ]pq = ℓ2γθ. This term can be rewritten in two ways

ℓ2γθ[(xn.r1δ)θ]pq →pq|ℓ1→r1
R ℓ2γθ[(xn.ℓ1δ)θ]pq = ℓ2γθ →ϵ|ℓ2→r2

R r2γθ

which gives rise to a critical peak of R. The equation ℓ2γθ[(xn.r1δ)θ]pq ≈ r2γθ is called a
critical pair of R. The set of critical pairs is denoted by CP(R).
Example 4. Consider the sort prop, the function symbols ⊥,⊤ : prop, ¬ : prop → prop,
∧,∨,⇒ : (prop, prop)→ prop, repl : (prop→ prop, prop)→ prop as well as the variables x : prop
and F : prop→ prop. The DPRS R consisting of the following rules

repl(y.F (¬y), x)→ F (x⇒ ⊥) ¬¬x→ x ¬(x⇒ ⊥)→ x

repl(y.F (y), x)→ F (x) ¬x→ x⇒ ⊥ (x⇒ ⊥)⇒ ⊥→ x

makes use of DHPs to facilitate replacement of ¬x by x⇒ ⊥ for arbitrary x in just one rewrite
step through repl which is not possible with PRSs. Let H1 : prop → prop, H2 : (prop, prop) →
prop and G : (prop, prop) → prop be fresh variables. Modulo symmetry, the system admits
one critical pair H1(x ⇒ ⊥) ≈ H1(¬x) from the root overlap of the two rules defining repl.
Moreover, there are variable overlaps between the first rule defining repl and itself as well as
the second rule defining repl resulting in the following critical pairs:

repl(y.G(H2(¬y,H1(¬y)⇒ ⊥),¬y), x) ≈ G(repl(z.H2(x⇒ ⊥,¬z), H1(x⇒ ⊥)), x⇒ ⊥)
repl(y.G(H2(¬y,H1(¬y)),¬y), x) ≈ G(repl(z.H2(x⇒ ⊥, z), H1(x⇒ ⊥)), x⇒ ⊥)

Furthermore, the first-order part gives rise to the critical pairs ¬x ≈ ¬x, ¬x ⇒ ⊥ ≈ x,
¬(x ⇒ ⊥) ≈ x, ¬x ≈ x ⇒ ⊥, (x ⇒ ⊥) ⇒ ⊥ ≈ x and x ⇒ ⊥ ≈ x ⇒ ⊥ (modulo symmetry).
A variable overlap between the first rule defining repl and ¬¬x → x yields the critical pair
repl(y.G(y,¬y), x) ≈ G(¬(x ⇒ ⊥), x ⇒ ⊥). Finally, repl(y.F (y ⇒ ⊥), x) ≈ F (x ⇒ ⊥) is
obtained from a variable argument overlap between the first rule defining repl and ¬x→ x⇒ ⊥.

With all definitions in place, we can now formulate a critical pair lemma for DPRSs. Note
that terms which are not joinable may not be directly connected by a critical pair. However,
this does not pose an issue as joinable critical pairs still yield joinability of all local peaks.

Lemma 2. Let R be a DPRS. If t →R · →R u then t ↓R u or t→∗
R · ↔CP(R) · →∗

R u.

Finally, we state how Lemma 2 can be used to establish confluence of terminating DPRSs.

Theorem 1. A terminating DPRS is confluent if and only if all its critical pairs are joinable.

Proof. Let R be a DPRS. If all its critical pairs are joinable then ↔CP(R) ⊆ ↓R and thus
→R · →R ⊆ ↓R by Lemma 2. Hence, R is locally confluent. Together with termination of R

we conclude confluence of R by Newman’s Lemma [10].

Example 5. Recall the DPRS R from Example 4. The critical pairs which do not contain
abstractions are easily joinable. For the other critical pairs between the rules defining repl we
have repl(y.G(H2(¬y,H1(¬y) ⇒ ⊥),¬y), x) →R G(H2(x ⇒ ⊥,H1(x ⇒ ⊥) ⇒ ⊥), x ⇒ ⊥) →R
G(repl(z.H2(x ⇒ ⊥,¬z), H1(x ⇒ ⊥)), x ⇒ ⊥) and repl(y.G(H2(¬y,H1(¬y)),¬y), x) →R
G(H2(x ⇒ ⊥, H1(x ⇒ ⊥)), x ⇒ ⊥) →R G(repl(z.H2(x ⇒ ⊥, z), H1(x ⇒ ⊥)), x ⇒ ⊥). The
remaining critical pairs are also joinable: repl(y.G(y,¬y), x) →R G(x,¬x) using the second
rule defining repl with the substitution {F 7→ z.G(z,¬z)}, G(x,¬x) →R G(x, x ⇒ ⊥) and
G(¬(x ⇒ ⊥), x ⇒ ⊥) →R G(x, x ⇒ ⊥). Similarly, repl(y.F (y ⇒ ⊥), x) →R F (x ⇒ ⊥).
Termination of R can be established by using straightforward interpretations of the function
symbols with the monotone algebra approach for HRS put forward by van de Pol [13]. Hence,
Theorem 1 yields confluence of R.
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Abstract

For a programming language, there are two kinds of term rewriting: run-time rewriting
(“evaluation”) and compile-time rewriting (“refinement”). Whereas refinement resembles
general term rewriting, evaluation is commonly constrained by Felleisen’s evaluation con-
texts. While evaluation specifies a programming language, refinement models optimisation
and should be validated with respect to evaluation. Such validation can be given by Sands’
notion of contextual improvement. We formulate evaluation in a term-rewriting-theoretic
manner for the first time, and introduce Term Evaluation and Refinement Systems (TERS).
We then identify sufficient conditions for contextual improvement, and provide critical pair
analysis for local coherence that is the key sufficient condition. As case studies, we prove
contextual improvement for a computational lambda-calculus and its extension with effect
handlers.

1 Introduction

Term rewriting is a general model of computation. The ecosystem of a functional programming
language utilizes two types of term rewriting: run-time rewriting, which we shall refer to as
evaluation, and compile-time rewriting, referred to as refinement. Run-time evaluation specifies
operational semantics of the language. It can only happen in a particular order, usually deter-
ministically. On the other hand, compile-time refinement models optimisation. It can happen
anywhere, nondeterministically. The difference between evaluation and refinement, as kinds of
term rewriting, can be summarized in terms of contexts:

(l → r) ∈ E E ∈ Ectx

E[lθ] →E E[rθ]

(l ⇒ r) ∈ R C ∈ Ctx

C[lθ] ⇒R C[rθ]

Evaluation →E uses a rewrite rule l → r inside a Felleisen’s evaluation context [3, 2] E ∈ Ectx
only; this is a new kind of restriction from the rewriting theoretic point of view. In contrast,
refinement ⇒R uses a rewrite rule l ⇒ r inside an arbitrary context C ∈ Ctx ; this resembles
general term rewriting.

We analyse the roles of term rewriting in programming languages in this manner and divide
them into evaluation and refinement for formalisation. This constitutes a novel theory that
is more suitable as a semantics of programming languages. Evaluation specifies (the behavior
of) a programming language as operational semantics. Evaluation is not merely a determinis-
tic restriction of refinement. Refinement which models optimisation should be validated with

∗This is an extended abstract of the paper presented at the FLOPS 2024 [6].
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respect to evaluation. Indeed, compiler optimisation is intended to preserve evaluation results
and improve time efficiency of evaluation. Such preservation and improvement deserve formal
validation.

Such validation can be provided as observational equivalence [4], and its quantitative variant,
contextual improvement [8]. Observational equivalence t ∼= u asserts that two terms t and u
cannot be distinguished by any context C; formally, if C[t] terminates, C[u] terminates with
the same evaluation result, and vice versa. Contextual improvement additionally asserts that
C[u] terminates with no more evaluation steps than C[t]. This is a suitable notion to validate
refinement which models optimisation.

Whereas the theory of refinement, which resembles general term rewriting, has been deeply
developed, evaluation seems to be a new kind of restricted rewriting and it lacks a general
theory from the perspective of term rewriting. This prevents useful ideas and techniques of
term rewriting from transferring from refinement to evaluation. In recent work [5] on a proof
methodology of observational equivalence, it is informally observed that a rewriting technique
can be useful for proving observational equivalence and contextual improvement. This method-
ology informally employs critical pair analysis, a fundamental technique in rewriting theory.
The idea is that t ∼= u holds if replacing t with u (which means applying a refinement rule
t ⇒ u) in any program does not conflict with any evaluation rule l → r.

1.1 Overview

We provide an overview of the new frameworks of Term Evaluation Systems (TES) and Term
Evaluation and Refinement Systems (TERS) we formulate in this paper, using examples to il-
lustrate their structure. We also demonstrate our main result: a method for deriving contextual
improvement through local coherence.

The standard left-to-right call-by-value lambda-calculus is a TES. Terms t, t′ including values
v are defined as below, and the call-by-value evaluation strategy is specified using evaluation
contexts E and one evaluation rule →:

v ::= λx.t, t, t′ ::= x | v | t t′, E ::= □ | E t | v E, (λx.t) v → t[v/x].

Values v appearing in this specification play a significant role. The definition of evaluation
contexts notably includes the clause v E where the left subterm v is restricted to values. This
ensures the left-to-right evaluation of application t t′; the right subterm t′ can be evaluated
only after the left subterm t has been evaluated to a value. Additionally, the redex (λx.t) v
restricts the right subterm v to values. This ensures the call-by-value evaluation of application.

A simplified computational lambda-calculus λml∗ [7] is a TERS. Its terms are either values
v, v′ or computations p, p′, and its evaluation (which has been studied [1]) is specified using
evaluation contexts E and two evaluation rules →:

v, v′ ::= x | λx.p, p, p′ ::= return(v) | let x = p in p′ | v v′,

E ::= □ | let x = E in p, (λx.p) v → p[v/x], let x = return(v) in p → p[v/x].

We can observe that evaluation contexts constrain where evaluation rules can be applied, namely
in the subterm p of let x = p in p′. Again, values in evaluation rules assure the call-by-value
evaluation of application and let-binding.

Originally, the calculus λml∗ is specified by equations rather than evaluation. Directed
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Figure 1: Joinability for confluence, commutation and local coherence

equations can be seen as the following five refinement rules ⇒:

(λx.p) v ⇒ p[v/x], let x = return(v) in p ⇒ p[v/x],

λx.v x ⇒ v, let x = p in return(x) ⇒ p,

let x1 = (let x2 = p2 in p1) in p3 ⇒ let x2 = p2 in let x1 = p1 in p3.

While the first two rules represent β-conversion, the third one represents η-conversion. The
fourth one removes the trivial let-binding, and the last one flattens let-bindings. We can
observe that the last three rules simplify terms. We now have a TERS of λml∗ which has both
evaluation and refinement. We are now interested in whether refinement is valid with respect
to evaluation. Our goal here is namely to prove contextual improvement: that is, for any
refinement t ⇒R u and any context C ∈ Ctx , if evaluation of C[t] terminates, then evaluation
of C[u] terminates with no more evaluation steps. To prove contextual improvement, we would
need to analyse how each evaluation step interferes with the refinement t ⇒R u. This amounts
to analyse how each evaluation rule l → r can conflict with each refinement rule l′ ⇒ r′.
This is what exactly critical pair analysis is targeted at. Critical pair analysis is usually for
proving confluence, which is a fundamental property of term rewriting. It firstly enumerates the
situation where two rewrite rules conflict with each other. It then checks if the two conflicting
rewritings can be joined. This is illustrated in Fig. 1 (left), where the joining part is depicted in
dashed arrows, and ‘∗’ means an arbitrary number of rewriting. In our development, we exploit
critical pair analysis for proving contextual improvement, and more specifically for proving local
coherence. The analysis is targeted at conflicts between evaluation → and refinement ⇒. We
analyse if these conflicts can be joined using evaluation and refinement; see Fig. 1 (right). To
ensure improvement, our notion of local coherence asserts that the joining part satisfies the
inequality 1 + k ≥ n about the number of evaluation steps. To prove the joinability for local
coherence, we need to be careful with evaluation contexts. We need to show that the 1 + k

evaluation steps E[lθ] →E E[rθ]
k→E u can be simulated by the n evaluation steps s

n→E s′.
Naively, this can be done by showing that the evaluation rule l → r can also be applied to
the term s. This, however, involves making sure that the rule l → r can be applied inside an
evaluation context. This is not a trivial issue; the evaluation context E might be modified by
the refinement E[t] ⇒R s. This modification should be “mild”, and more precisely, refinement
should not turn an evaluation context into a non-evaluation context. Note that local coherence
can be seen as a generalisation of commutation [9]; see Fig. 1 (middle). Commutation is the

case where k = 0, n = 1, and allowing only one step of refinement ⇒R instead of
∗⇒R. Our

main theorems are as follows.

Theorem 1. A well-behaved TERS is locally coherent if and only if every critical pair is
joinable.
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Theorem 2. Let (E ,R,Val) be a TERS. If E is deterministic, and (E ,R,Val) is value-
invariant and locally coherent, then the set R of refinement rules is improvement w.r.t. the set
E of evaluation rules.

Example 1. We define a TERS Append as follows.

Signature Σ [ ] : 0, (:) : 2, (++): 2
Values Val V ::= [ ] | V : V

Evaluation contexts Ectx E ::= □ | E ++ t | E : t | V : E
Evaluation rules E Refinement rules R
[ ] ++ ys → ys (xs ++ ys)++ zs ⇒ xs++(ys++ zs)
(x : xs)++ ys → x : (xs++ ys)

This defines a well-known append function on strict lists with associativity as a refinement rule.
Equations that naturally hold for lists can be considered as candidates for refinement rules. The
TERS Append has the following two joinable critical pairs.
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Because the TERS is well-behaved, it is locally coherent by Thm. 1. By Thm. 2, we
conclude that the refinement rule expressing the associativity of append is improvement w.r.t.
its evaluation.

Example 2. (A simplified computational lambda-calculus λml∗ [7, 1]) A notion of
evaluation for Sabry and Wadler’s computational lambda-calculus λml∗ [7] has been studied
[1]. A TERS Compλml∗ of the computational lambda-calculus is defined as follows. We use
syntactic sugar λx.t ≡ λ(x.t), t u ≡ @(t, u).

Syntax class Sclass

Values V, V ′ ::= x | λx.P

Computations P, P ′ ::= return(V ) | let(P, x.P ′) | V V ′

Evaluation contexts Ectx E ::= □ | let(E, x.P )

Evaluation rules E
(λx.P [x]) V → P [V ] (1)

let(return(V ), x.P [x]) → P [V ] (2)

Refinement rules R
(λx.P [x]) V ⇒ P [V ] (r1)

let(return(V ), x.P [x]) ⇒ P [V ] (r2)

λx.V x ⇒ V (r3)
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let(P, x.return(x)) ⇒ P (r4)

let(let(P1, x1.P2[x1]), x2.P3[x2]) ⇒ let(P1, x1.let(P2[x1], x2.P3[x2])) (r5)

We define =Val by the total relation ⊤. This means we observe only termination (since Val ⊆
NF(→E)), identifying all values. The TERS Compλml∗ has the following three critical pairs. In
the following, arrows →, ⇒ are labelled by a number that indicates which evaluation/refinement
rule is applied.

(λx.V x) V ′
1

((PP
PPr3

rz nnnnnnnn

V V ′ V V ′

let(return(V ), x.return(x))
2

++WWWW
WWWr4

ow gggggg
gggggg
gg

return(V ) return(V )

let(let(return(V ), x.P [x]), x′.P ′[x′])
2

**TTTT
TTr5

ow ffffff
ffffff

ff

let(return(V ), x.let(P [x], x′.P ′[x′]))

2 ++XXXXX
XXX

let(P [V ], x′.P ′[x′])

jjjjj
jjjjjj
j

let(P [V ], x′.P ′[x′])

Finally, by Thm. 1 and Thm. 2, the refinement rules R of each of the TERSs are improvement
with respect to the evaluation rules E .
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The introduction of infinitary rewriting [DKP91; Ken+95] and in particular of infinitary
λ-calculi [Ken+97] created a syntactic bridge between the dynamics of rewriting systems (β-
reduction in the case of the λ-calculus, whose presentation is finitary while inducing infinite
behaviours) and their semantics (at least in its most syntactic flavours, e.g. Böhm trees for
the λ-calculus). Confluence, already a highly desirable property for a finitary rewriting system,
becomes even more important in this setting as it ensures uniqueness of infinitary normal forms,
i.e. consistency of the associated model. However, it is a fragile property as the infinitary
closure of a confluent reduction may not be confluent (in the λ-calculus, YI −→∞

β Iω := III . . .
and YI −→∞

β Ω, which constitues a critical pair), hence the need for tweaking this infinitary
closure to retrieve confluence [KOV96; SV11b].

A seemingly orthogonal line of work originating in Girard’s quantitative semantics [Gir88]
led to the advent of a linear approximation of the λ-calculus based on Taylor expansion [ER08;
ER06], which allowed for a renewal and a refinement of the classic approach based on contin-
uous approximation, and for a whole range of new, elegant proofs of key results in λ-calculus
[BM20; CV23]. The major property of the linear approximation, known as the Commutation
theorem, relates the infinitary head normalisation of a λ-term towards its Böhm tree to the
(finitary) normalisation of its Taylor expansion, that is, the sum of its multilinear “resource”
approximants.

However, this presentation of the linear approximation is slightly disappointing for at least
two reasons: it only accounts for infinitary normalisation of λ-terms, instead of arbitrary β-
reduction sequences; it relies on the continuous approximation to handle the Taylor expansion
of Böhm trees, instead of being built independently. In [CV23; Cer24], we demonstrate how
extending the linear approximation to an infinitary λ-calculus and relaxing Commutation (wrt.
normalisation) into a property of Simulation (wrt. infinitary β⊥-reduction) allows to overcome
these two impediments. Infinitary λ-calculus thus appears to be the “missing ingredient” thanks
to which we could give a general, canonical presentation of the linear approximation of the λ-
calculus.

In the following exposition, we take a somehow dual perspective and explain what linear
approximation brings to infinitary λ-calculi. In section 1, we recall the coinductive presentation
of abc-infinitary λ-calculi. In section 2, we present two linear approximations for the 001-
infinitary λ-calculus (this was published in [CV23] and directly extends Ehrhard and Regnier’s
original work), and for the 101-infinitary λ-calculus (which is not yet formally published, but has
already been presented in [Cer24; Cer]). In both cases, we state a Simulation theorem relating
the infinitary β⊥-reduction to the reduction of Taylor expansions. In section 3, we detail how
confluence of the given infinitary λ-calculi can be deduced as a corollary of Simulation. Finally,
in section 4 we evoke the remaining infinitary λ-calculi (the 111-infinitary version, which is
also confluent, and more generally the infinitary λ-calculi modulo meaningless terms), stating a

∗Abstract submitted to the 14th International Workshop on Confluence (IWC 2025).
†Partially funded by the ANR project RECIPROG ANR-21-CE48-019.
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negative result preventing the construction of a suitable linear approximation. We also mention
possible directions for further work.

1 Infinitary λ-calculi

We first recall the construction of infinitary λ-calculi. We depart from the original definition
[Ken+97] and follow its coinductive reformulation [Joa04; EP13; Cer24].

Fix a countable set V of variables. Recall the inductive syntax of finite λ-terms:

x ∈ V
x ∈ Λ

x ∈ V P ∈ Λ

λx.P ∈ Λ

P ∈ Λ Q ∈ Λ

PQ ∈ Λ

By treating these rules coinductively, one obtains a set of infinitary λ-terms. But one could also
treat each constructor in a different way (inductive or coinductive), which is the point of the
following definition. Take a, b, c ∈ {0, 1}, then the set Λabc of abc-infinitary λ-terms is defined
by:

x ∈ V
x ∈ Λabc

x ∈ V ▷a P ∈ Λabc

λx.P ∈ Λabc

▷b P ∈ Λabc ▷c Q ∈ Λabc

PQ ∈ Λabc
M ∈ Λabc

▷0 M ∈ Λabc

M ∈ Λabc

▷1 M ∈ Λabc

where only the last rule is coinductive, i.e. infinite branches in infinite derivations must cross
this rule (and hence the coinductive guard ▷1) infinitely often. In particular, Λ000 = Λ.

These sets are implicitely quotiented by α-equivalence, which is very standard for finite λ-
terms but raises certain technicalities for infinitary ones; a complete treatment using nominal
sets is provided in [Kur+13; Cer25]. This allows to define capture-avoiding substitution at the
level of α-equivalence classes, and we denote by M [N/x] the term obtained by substituting N
to all free occurrences of x in M .

All our sets of λ-terms are endowed with the relation −→β of β-reduction, defined by
(λx.M)N −→β M [N/x] and by inductively lifting to contexts. Given again a, b, c ∈ {0, 1},
the abc-infinitary closure of β-reduction is defined by:

M −→∗
β x

M −→abc
β x

M −→∗
β λx.P ▷a P −→abc

β P ′

M −→abc
β λx.P ′

M −→∗
β PQ ▷b P −→abc

β P ′ ▷c Q −→abc
β Q′

M −→abc
β P ′Q′

M −→abc
β N

▷0 M −→abc
β N

M −→abc
β N

▷1 M −→abc
β N

We use the standard combinators I := λx.x, K := λxy.x, Ω := (λx.xx)(λx.xx), and the
fixed-point combinator Y := λf.(λx.f(xx))(λx.f(xx)) (such that Yf =β f(Yf)). We can define
the following examples of infinitary λ-terms:

Mω :=M(M(M(. . . ))) ∈ Λab1 for M ∈ Λab1 O := λy0.λy1.λy2. · · · ∈ Λ1bc

as well as the infinitary β-reductions:

Yf −→ab1
β fω YK −→1bc

β O

As said, the abc-infinitary closures lack confluence (unless abc = 000), which is a critical
issue. We already mentionned the critical pair YI −→ab1

β Iω and YI −→β Ω, let us consider the
following variant that we will use as a running example:

YK −→001
β Kω YK −→∗

β (λxy.xx)(λxy.xx). (1)
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The standard solution to restore confluence is to extend β-reduction with a relation −→⊥ of
⊥-reduction collapsing the “problematic” parts of a term to a constant ⊥. We denote by Λ⊥,
Λabc⊥ the sets obtained by the above definitions with additional axiom rules saying that ⊥ ∈ Λ⊥
and ⊥ ∈ Λabc⊥ . Given a set U ⊆ Λabc⊥ , a reduction −→⊥U is defined on Λabc⊥ by M −→⊥U ⊥ for
all M ∈ U , and by inductively lifting to contexts. We also define −→β⊥U := −→β ∪ −→⊥U .

Remember that a λ-term is either a head normal form (hnf), i.e. a term of the shape
λx1. . . . λxm.yM1 . . .Mn, or a term λx1. . . . λxm.(λx.P )QM1 . . .Mn where (λx.P )Q is called
the head redex. This can be refined as follows: a λ-term is either a term λx.M , or a term
yM1 . . .Mn (two types of weak head normal forms, or whnf’s), or a term (λx.P )QM1 . . .Mn

where (λx.P )Q is called the weak head redex.
For U in the definitions above, we may in particular consider the following sets:

HN :=
{
M ∈ Λ111

⊥
∣∣ M has no hnf

}
WN :=

{
M ∈ Λ111

⊥
∣∣ M has no whnf

}
.

We define −→001
β⊥ (resp. −→101

β⊥ ) on Λ001
⊥ (resp. Λ101

⊥ ) by the rules defining −→001
β (resp. −→101

β ),
where we replace −→∗

β with −→∗
β⊥HN (resp. −→∗

β⊥WN ).

Standard examples are given by the coinductive definitions of the Böhm tree of a term
M ∈ Λ001

⊥ :

BT(M) :=

{
λx1. . . . λxm.yBT(M1) . . .BT(Mn) if M −→∗

h λx1. . . . λxm.yM1 . . .Mn,
⊥ otherwise,

where −→h denotes head reduction, i.e. the restriction of β-reduction where one only reduces
head redexes, and of the Lévy-Longo tree of a term M ∈ Λ101

⊥ :

LLT(M) :=





λx.LLT(M ′) if M −→∗
wh λx.M

′

yLLT(M1) . . .LLT(Mn) if M −→∗
wh yM1 . . .Mn,

⊥ otherwise,

where −→wh denotes weak head reduction, i.e. the restriction of β-reduction where one only
reduces weak head redexes. It is easy to verify that M −→001

β⊥ BT(M) and M −→101
β⊥ LLT(M),

just following from their definition. In particular, for the previously introduced examples:

BT(Yf) = LLT(Yf) = fω BT(YI) = LLT(YI) = ⊥ BT(YK) = ⊥ LLT(YK) = O.

2 Strict and lazy linear approximations

The linear approximation relies on a map T : Λ001
⊥ → P(Λr) mapping λ-terms to sets1 of

“resource λ-terms”, the terms of a multilinear λ-calculus. We recall its construction very briefly,
see [VA19; Cer24] for more details. The set Λr of resource λ-terms is defined inductively by:

Λr ∋ s, t, . . . := x | λx.s | st̄ (x ∈ V)
!Λr ∋ t̄, ū, . . . := [t1, . . . , tn] (n ∈ N)

We write (!)Λr to denote Λr or !Λr. We denote by N[(!)Λr] the N-semimodule of finitely
supported formal sums of resource λ-terms (finite resource sums in short). We denote by
boldface s, t, etc. its elements and by 0 the empty sum. As usual in resource λ-calculus, we

1In the general, quantitative definition, the Taylor expansion is an infinite formal sum of resource λ-terms
weighted by coefficients taken in an arbitrary semiring with fractions. Here we present the qualitative definition
where we just work with the semiring of booleans, thus the formal sums are mere sets.
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assimilate resource terms to one-element resource sums and we extend the constructors of the
above inductive definitions to sums, by linearity (e.g., λx.(s+ t) = λx.s+ λx.t or 0t̄ = 0).

Substitution in resource terms is defined by

s⟨[t1, . . . , tn]/x⟩ :=
{ ∑

σ∈S(n) s[tσ(1)/x1, . . . , tσ(n)/xn] if degx(s) = n

0 otherwise,

where degx(s) is the number of free occurrences of x in s, x1, . . . , xn is an arbitrary enu-
meration of these free occurrences, S(n) is the set of all permutations of {1, . . . , n}, and
s[tσ(1)/x1, . . . , tσ(n)/xn] is the resource term obtained by substituting the ti to the occurrences
xi.

The relation−→r of resource reduction is defined as a subset of (!)Λr×N[(!)Λr] by (λx.s)t̄ −→r

s⟨t̄/x⟩ and by lifting to contexts. It is extended to a relation on N[Λr] by saying that s+ t −→r

s′ + t′ whenever s −→r s
′ and t −→?

r t
′ (−→?

r denoting the reflexive closure).

Lemma 1. −→r is confluent
2 and strongly normalising.

Let us now define the linear approximation itself. A relation ⊑T is defined as a subset of
Λr × Λ001

⊥ by the following inductive rules:

x ⊑T x

s ⊑T M

λx.s ⊑T λx.M

s ⊑T M t1 ⊑T N . . . tn ⊑T N

s[t1, . . . , tn] ⊑T (M)N

and the Taylor expansion of any M ∈ Λ001
⊥ is defined by T (M) := {s ∈ Λr | s ⊑T M}. For

example, T (fω) contains f [], f [f []], f [f [], f []], f [f [f []]], and can be described more generally
by the following inductive equation: T (fω) = {f [t1, . . . , tn] | n ∈ N, t1, . . . , tn ∈ T (fω)}.

Since Taylor expansion maps λ-terms to sets of resource terms, we need to explain how to
lift the resource reduction to such sets. Let us denote by |s| the support of any finite sum
s ∈ N[(!)Λr]. Then for all S, T ⊆ (!)Λr we write S −↠r T whenever there is a set I such that
S =

⋃
i∈I {si}, T =

⋃
i∈I |ti| and for all i ∈ I, si −→∗

r ti.
Thanks to lemma 1, we can also define nfr(s) to be the unique normal form through −→r of

any s ∈ N[(!)Λr], and nfr(S) :=
⋃
s∈S |nfr(s)| for all set S ⊆ (!)Λr. In particular, S −↠r nfr(S).

Our main result in [CV23] is the following theorem, that can be seen as the cornerstone of
the whole linear approximation theory for the λ-calculus. An immediate consequence is Ehrard
and Regnier’s celebrated Commutation theorem.

Theorem 2 (Simulation). For all M,N ∈ Λ001
⊥ , if M −→001

β⊥ N then T (M) −↠r T (N).

Corollary 3 (Commutation). For all M ∈ Λ001
⊥ , nfr(T (M)) = T (BT(M)).

As noticed in [Cer24; Cer] one can adapt this work to the lazy setting, i.e. to weak head
normalisation and the 101-infinitary λ-calculus. To do so, we add a constant o in the syntax
of the resource λ-calculus (it stands for an undefined abstraction, typically approximating of
λx.⊥), defining a set of lazy resource λ-terms Λrℓ. The lazy Taylor expansion of any M ∈ Λ101

⊥
is defined by Tℓ(M) := {s ∈ Λrℓ | s ⊑Tℓ

M}, where ⊑Tℓ
is defined just as ⊑T with an additional

rule saying that o ⊑Tℓ
λx.M for all M . We obtain similar results:

Theorem 4 (Simulation). For all M,N ∈ Λ101
⊥ , if M −→101

β⊥ N then Tℓ(M) −↠r Tℓ(N).

Corollary 5 (Commutation). For all M ∈ Λ101
⊥ , nfr(Tℓ(M)) = Tℓ(LLT(M)).

2In fact a way stronger property holds: its reflexive closure −→?
r has the diamond property.
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3 Confluence results

Before we show how the linear approximation allows for elementary proofs of confluence for
−→001

β⊥ and −→101
β⊥ , let us describe how confluence works on the example from eq. (1), namely

YK −→a01
β Kω YK −→∗

β (λxy.xx)(λxy.xx),

a critical pair for −→001
β , but neither for −→001

β⊥ nor for −→101
β⊥ , for two different reasons.

In the latter case, the reductions can simply be continued:

Kω = KKω −→β λy.K
ω −→101

β O (λxy.xx)(λxy.xx) −→β λy.(λxy.xx)(λxy.xx) −→101
β O.

In the former case however, this cannot be done as it is forbidden to reduce coinductively under
abstractions. Instead, −→⊥HN (included in −→001

β⊥ ) restores confluence:

Kω −→h λy.K
ω −→⊥HN ⊥ (λxy.xx)(λxy.xx) −→h λy.(λxy.xx)(λxy.xx) −→⊥HN ⊥.

(From the first head reduction steps we explicitely wrote, one can see that no hnf will be
reached.) Through the lens of Taylor expansion, the first reduction (and similarly the second)
can be seen as T (Kω) −↠r ∅. Indeed, recall from a previous observation that T (Kω) can
be described by the equation T (Kω) = {K[t1, . . . , tn] | n ∈ N, t1, . . . , tn ∈ T (Kω)}. Since this
inductive construction has K[] as its base case, any s ∈ T (Kω) contains K[] as a subterm, and
since K[] −→r 0 any such s also collapses to 0 by linearity.

This example shows how the collapse of any “non-001” behaviour, like the production of O,
is erased by the resource reduction in the world of Taylor expansions. This is hidden in the
following proof of theorem 8.

Lemma 6. If N ∈ Λ001
⊥ is in normal form for −→β⊥HN , then BT(N) = N .

Lemma 7. T is injective when restricted to terms of Λ001
⊥ not containing subterms of the shape

λx.⊥ or (⊥)M . In particular, it is injective on normal forms for −→⊥HN .

Theorem 8 (uniqueness of normal forms). For all M ∈ Λ001
⊥ , BT(M) is the unique normal

form for −→β⊥HN reachable through −→001
β⊥ from M 3.

Proof. Suppose there is another such normal form, denote it by N . Then:

T (N) = T (BT(N)) by lemma 6,

= nfr(T (N)) by corollary 3,

= nfr(T (M)) by theorem 2 and lemma 1,

= T (BT(M)) by corollary 3 again,

and we can conclude that N = BT(M) by lemma 7.

Corollary 9 (confluence). −→001
β⊥ is confluent on Λ001

⊥ .

Proof. If M −→001
β⊥ N and M −→001

β⊥ N ′, then M −→001
β⊥ BT(N) and M −→001

β⊥ BT(N ′), and
BT(N) = BT(N ′) = BT(M) by theorem 8.

The very same work can be done starting from theorem 4, giving rise to:

Theorem 10 (uniqueness of normal forms). For all M ∈ Λ101
⊥ , LLT(M) is the unique normal

form for −→β⊥WN reachable through −→101
β⊥ from M .

Corollary 11 (confluence). −→101
β⊥ is confluent on Λ101

⊥ .
3The reason why we do not simply write “the unique normal form for −→001

β⊥” is just that the latter relation

is reflexive, hence not having any normal forms.
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4 Beyond 001 and 101: a negative result and further work

In this section, we work in Λ111
⊥ , and we simply denote this set by Λ∞

⊥ . In section 1, we defined a
reduction −→⊥U collapsing any set U ⊆ Λ∞

⊥ to ⊥, but only used it for the two subsets HN and
WN . This can in fact be seen as a general construction for restoring confluence of the infinitary
β-reduction, relying on a notion of “meaningless set” defined by a certain list of axioms (see
[KOV96; SV11b]), such that in particular HN and WN are meaningless sets.

Theorem 12 ([KOV96; SV11b]). For all meaningless set U ⊆ Λ∞
⊥ , the reduction −→∞

β⊥U is
confluent. In addition, each M ∈ Λ∞

⊥ has a unique normal form through −→∞
β⊥U .

Notice that the instance of this theorem for U := HN (resp. U := WN ) is not exactly
corollary 9 (resp. corollary 11), since we now work in Λ111

⊥ . However, the former can be easily
deduced from the latter.

If we denote by TU (−) the map taking λ-terms to their normal form through −→∞
β⊥U (so that

in particular THN = BT and TWN = LLT), the equivalence relation generated by equating M
and N whenever TM = TN induces a λ-model, called “normal form model”. These models form
a lattice of cardinality 2c, where c is the cardinality of the continuum [SV11a]. By exploiting
the semantic properties of these models, Severi and de Vries were able to distinguish BT and
LLT from all other normal form models:

Theorem 13 ([SV05a]). HN and WN are the only meaningless sets U such that TU : Λ∞
⊥ →

Λ∞
⊥ is Scott-continuous (with respect to the standard approximation order on Λ∞

⊥ ).

Notice that the approximation order on λ-terms corresponds to inclusion of Taylor expan-
sions (in both the strict and the lazy setting), which means that Taylor expansion is Scott-
continuous. As a consequence of this observation and Commutation (corollaries 3 and 5), one
obtains the content of theorem 13 for HN and WN , i.e. that BT and LLT are continuous
maps.

The fact that this is a straightforward consequence of the two main properties of the Taylor
approximations gives another meaning to theorem 13: for all meaningless set U different from
HN and WN , there cannot be a Taylor expansion enjoying desirable properties, as a commu-
tation theorem with respect to TU . In particular the other standard notion of infinite normal
form for λ-terms, namely Berarducci trees [Ber96], does not enjoy such a Taylor expansion.

A possible workaround would be to consider another ordering on Λ∞
⊥ , as introduced in

[SV05b], which makes TU monotonous as soon as U is “quasi-regular” (which is the case in
particular for Berarducci trees): one could wonder whether a linear approximation compatible
with such an ordering can be constructed.

Another avenue for future work is to investigate linear approximations in more complex
rewriting systems which may not have been studied from the perspective of infinitary rewriting
theory, but do enjoy notions of infinitary normal forms, e.g. probabilistic λ-calculi [DL19] or
the Λμ-calculus [Sau10].
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Abstract

Pattern completeness is the property that the left-hand sides of a functional program
or term rewrite system cover all cases w.r.t. pattern matching. This or related properties
are required, if one wants to perform ground confluence proofs by rewriting induction. In
order to certify such confluence proofs, we develop a novel algorithm that decides pattern
completeness. The algorithm has an asymptotic optimal complexity, as it belongs to the
complexity class co-NP. It has been verified in Isabelle/HOL and outperforms existing
algorithms, even including the pattern completeness check of the GHC Haskell compiler.

1 Introduction

Consider programs written in a declarative style such as functional programs or term rewrite
systems (TRSs), where evaluation is triggered by pattern matching. In many applications it
is important to ensure that evaluation of a given program cannot get stuck. For instance in
Isabelle/HOL [8], in a function definition the patterns must cover all cases, since HOL is a logic
of total functions. Moreover, automated theorem proving methods that are based on rewriting
induction [1, 9] require similar completeness results, e.g., for proving ground confluence.

Example 1. Let CN = {true : B, false : B, 0 : N, s : N → N} be the set of constructors to
represent the Booleans and natural numbers in Peano’s notation. We consider a TRS that
defines a function even : N→ B to compute whether a natural number is even.

even(0)→ true even(s(0))→ false even(s(s(x)))→ even(x) (1)

This TRS is pattern complete, since no matter which number n we provide as argument,
one of the left-hand sides (lhss) will match the term even(n). Note the importance of sorts
(types):without them, the evaluation of the (unsorted) term even(s(true)) would get stuck.

Kapur et al. [4] proved the decidability of quasi-reducibility, which implies that pattern
completeness is also decidable. The algorithm their proof uses has an exponential best-case
complexity; i.e., to ensure completeness, one always has to enumerate exponentially many
terms and test whether their evaluation does not get stuck. Therefore, Lazrek, Lescanne and
Thiel developed the more practical complement algorithm [6], which is a decision procedure for
pattern completeness in the left-linear case, but may fail otherwise. Pattern completeness of
left-linear inputs can also be encoded into a problems on tree automata.

In this paper, we present an algorithm for pattern completeness with the following features:
it is a decision procedure, even in the non-linear case; the algorithm is contained in co-NP and

∗This research was supported by the Austrian Science Fund (FWF) project I 5943.
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is therefore asymptotically optimal; in our experiments it outperforms existing other implemen-
tations for checking pattern completeness, including the pattern completeness check of the ghc
Haskell compiler; and its correctness is fully verified in Isabelle/HOL.

A preliminary version of the algorithm has already been published at FSCD [12]. However,
the FSCD algorithm exhibits exponential time and space requirements for non-linear inputs.

The current paper has been submitted in an extended version for a journal publication. The
formalization, the executable code and details on the experiments are available at
http://cl-informatik.uibk.ac.at/software/ceta/experiments/pat_complete/.

2 Decision Procedure for Pattern Completeness

We assume familiarity with notions and notations of term rewriting [?]. We consider first-order
sorted rewriting. Here, S is a set of sorts ι, ι′, . . . , and V is an infinite set of sorted variables,
and F is a signature consisting of sorted function symbols f : ι1 × · · · × ιn → ι0 ∈ F . We write
t : ι ∈ T (F ,V) if t is a first-order term over F and V with sort ι. We denote T (F ,V) for the set
of sorted terms over F and V and T (F) for the set of sorted ground terms. Term t is linear if no
variable occurs more than once in t. A substitution is a sort-preserving map σ : V → T (F ,V),
and tσ is obtained from term t by replacing all x by σ(x). A term ℓ matches a term t if ℓσ = t
for some substitution σ. The signature F is split into two disjoint signatures C and D, where
C contains constructor symbols and D contains defined symbols. The cardinality |ι| of a sort
ι ∈ S is defined as the number of values of that sort, i.e., |{t | t : ι ∈ T (C)}|. We assume that
every sort is inhabited, i.e., |ι| > 0. A sort ι is finite if |ι| is finite, and is infinite otherwise.

Before we design the decision procedure for pattern completeness we first reformulate and
generalize this notion, leading to matching problems and pattern problems.

Definition 2 (Matching Problem and Pattern Problem). A matching atom is a pair of terms
written t ∼ ℓ, where t is called matchee and ℓ is called pattern. The set of matching atoms is
denoted byM. A finite set mp ∈ P(M) of matching atoms is called a matching problem, and
is complete w.r.t. a constructor ground substitution σ : V → T (C) if there is some substitution
γ : V → T (F) such that tσ = ℓγ for all t ∼ ℓ ∈ mp. A finite set pp ∈ P(P(M)) of matching
problems is called a pattern problem, and is complete if for each σ : V → T (C) there is some
mp ∈ pp such that mp is complete w.r.t. σ.

A set L of terms covers [2, 5, 11] a set T of terms, if every constructor ground instance
of a term in T is matched by some term in L. Clearly, L covers T if and only if all pattern
problems in P = {{{t ∼ ℓ} | ℓ ∈ L} | t ∈ T} are complete. The complement algorithm decides
whether L covers T if all terms in L are linear. Also pattern completeness is a special case:
A program with lhss L is pattern complete, if every basic ground term f(t1, . . . , tn), where
f : ι1 × · · · × ιn → ι0 ∈ D and t1 : ι1, . . . , tn : ιn ∈ T (C), is matched by some ℓ ∈ L. Clearly,
this is exactly that L covers {f(x1, . . . , xn) | f : ι1 × · · · × ιn → ι0 ∈ D} where x1, . . . , xn are
distinct variables.

The proposed decision procedure works in three phases. The upcoming definition shows
the inference rules of the first phase. Similar inference rules have already been presented in
the FSCD paper [12], but there is a difference in the kind of non-determinism. In the FSCD
paper only a “don’t care” kind of non-determinism was present; i.e., there might be several
applicable rules, and it does not matter in which order the rules are applied. In contrast, here
we have another form of non-determinism, which will be essential for the complexity analysis.
The non-deterministic choice in the inference rules of⇒nd will need to guess which new problem

32



Deciding pattern completeness in non-deterministic polynomial time René Thiemann and Akihisa Yamada

is incomplete, if there is any. In the inference rules we also make use of a special matching
problem ⊥mp that represents an incomplete matching problem.

Definition 3 (Phase One of Reduction Rules). We define the reduction relation→ of matching
problems by the following rules.

{f(t1, . . . , tn)∼ f(ℓ1, . . . , ℓn)} ⊎mp→ {t1 ∼ ℓ1, . . . , tn ∼ ℓn} ∪mp (decompose)

{t∼ x} ⊎mp→ mp if ∀s∼ ℓ ∈ mp. x /∈ Var(ℓ) (match)

{f(. . .)∼ g(. . .)} ⊎mp→ ⊥mp if f ̸= g (clash)

{t∼ x, t′ ∼ x} ⊎mp→ ⊥mp if t and t′ do not unify (clash’)

{y ∼ x, t∼ x} ⊎mp→ ⊥mp if t /∈ T (C,V) (no-constructor)

{f(ti1, . . . , tin)∼ x | i ∈ {0, . . . ,m}} ⊎mp→ {tij ∼ zj | i ∈ {0, . . . ,m}, j ∈ {1, . . . , n}} ∪mp
if x does not occur in mp and z1, . . . , zn are distinct fresh variables (decompose’)

We further define the relation⇒ from pattern problems to sets of pattern problems as follows:

{mp} ⊎ pp⇒ {{mp′} ∪ pp} if mp→ mp′ (simp-mp)

{mp} ⊎ pp⇒ {pp} if mp→ ⊥mp (remove-mp)

{∅} ⊎ pp⇒ ∅ (success)

pp⇒ Inst(pp, x) if mp ∈ pp and x∼ f(. . .) ∈ mp (instantiate)

pp ⊎ pp′ ⇒ {pp′} if pp ̸= ∅, all variables in pp′ are of finite sort, and

∀mp ∈ pp. ∃x, y, t, ι. {y ∼ x, t∼ x} ⊆ mp ∧ y : ι ∈ V ∧ y ̸= t ∧ |ι| ≥ ω (inf-diff)

Here, for a pattern problem pp and a variable x : ι0 ∈ V, the pattern problem set Inst(pp, x)
consists of a pattern problem ppσx,c = {{tσx,c∼ ℓ | t∼ ℓ ∈ mp} | mp ∈ pp} for each c : ι1×· · ·×
ιn → ι0 ∈ C, where σx,c = [x 7→ c(x1, . . . , xn)] for distinct fresh variables x1 : ι1, . . . , xn : ιn ∈ V.

We finally define the non-deterministic relation ⇒nd by pp⇒nd pp
′ iff pp⇒ P and pp′ ∈ P .

Rules (decompose), (match) and (clash) correspond to a standard matching algorithm,
and (simp-mp) and (remove-mp) lift these simplifications on matching problems to pattern
problems. The (success) rule identifies solved matching problems in which case the whole
pattern problem is pattern complete, so no new problems are generated. The core rule is
(instantiate), where a matching algorithm would detect a failure since non-variable pattern
f(. . .) does not match a variable x. In contrast, x in our setting represents an arbitrary
constructor ground term. So we just do case analysis, by replacing x : ι0 ∈ V by all possible
constructor terms of shape c(x1, . . . , xn) for all c : ι1 × · · · × ιn → ι0 ∈ C.

The remaining four rules are for non-linear problems, where a matching problem contains
multiple matching atoms ti∼x for shared pattern variable x. Such a matching problem restricts
to a constructor ground substitution σ such that all tiσ result in the same term. Hence,
(decompose’) allows decomposing x if all such ti have the same root symbol. Otherwise, a
failure is reported in (clash’), if there are ti and tj that are not unifiable. Moreover, if ti is
a variable y, then tiσ is a constructor ground term, and thus, a failure is reported in (no-
constructor) whenever tj /∈ T (C,V). Finally, there is a potential difference y ̸= t in (inf-diff).
Here, one can prove that such a matching problem can never cover all possible constructor
ground substitutions σ, if y has an infinite type.

The following theorem states that ⇒nd can be used as a first step to decide completeness
of pattern problems, which simplifies arbitrary pattern problems to finite constructor form. A
pattern problem pp has this form, if for all t ∼ ℓ ∈ mp ∈ pp, ℓ and t have a finite sort, ℓ is a
variable and t ∈ T (C,V).
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Theorem 4 (Phase One: Switching to Finite Constructor Form).

• The maximum number of ⇒nd-steps is polynomially bounded.

• If pp⇒!
nd pp

′ then pp′ is in finite constructor form.

• pp is incomplete iff there is some pp′ such that pp⇒!
nd pp

′ and pp′ is incomplete.

Note that in case of linear pattern problems, the first phase is already a decision procedure:
then pp is incomplete iff pp ⇒!

nd ∅. In this case the only normal forms are ∅—representing an
incomplete pattern problem—and {∅}—representing a trivially complete pattern problem.

Example 5. Consider a signature with sorts {ι0, . . . , ιn} where each sort has a single construc-
tor: c0 : ι0 and ci+1 : ιi × ιi → ιi+1 for all i < n. Then every ιi contains exactly one ground
term gti, which is a full binary tree of depth i, i.e., the size of gti is 2i − 1.

Next consider the TRS over this signature that has left-hand sides f(x0, c1(x0, x0), , , . . . ),
f( , x1, c2(x1, x1), , , . . . ), . . . , f( , . . . , , xn−1, cn, (xn−1, xn−1)) where each underscore repre-
sents a fresh variable, and the aim is to check whether the TRS is pattern complete. The initial
pattern problem encoding this problem is thus

pp0 = {{t∼ f(x0, c1(x0, x0), , , . . . )}, {t∼ f( , x1, c1(x1, x1), , , . . . )}, . . .}.

where t = f(y0, y1, y2, . . . , yn). The first phase performs the following steps on pp0.

pp0 ⇒∗
nd {{y0 ∼ x0, y1 ∼ c1(x0, x0)}, {y1 ∼ x1, y2 ∼ c2(x1, x1)}, {y2 ∼ x2, y3 ∼ c3(x2, x2)}, . . . }
⇒!
nd {{y0 ∼ x0, z1 ∼ x0, z2 ∼ x0}, {c1(z1, z2)∼ x1, z3 ∼ x1, z4 ∼ x1},
{c2(z3, z4)∼ x2, z5 ∼ x2, z6 ∼ x2}, . . . } =: pp1

The FSCD algorithm would now fully instantiate all variables y0, z1, z2, . . . in pp1 to the corre-
sponding ground terms gti in order to finally detect pattern completeness. This process requires
exponential time and space.

In the non-linear case we still have to solve problems in finite constructor form, which will
be done in phases two and three of the new algorithm. Since the first phase yields normal forms
whose patterns are only variables, phase two starts with simplifying the presentation so that
names of the pattern variables are irrelevant. For instance, we identify the matching problem
{t1 ∼ x, t2 ∼ y, t3 ∼ x, t4 ∼ x, t5 ∼ y} with {{t1, t3, t4}, {t2, t5}}, forgetting the variable symbols
x and y by grouping all corresponding matchee terms in equivalence classes. From now on we
just consider finite constructor problems in this simplified form. For instance, pp1 in Example 5
becomes:

{{{y0, z1, z2}}, {{c1(z1, z2), z3, z4}}, {{c2(z3, z4), z5, z6}}, . . . }
The second phase eliminates all occurrences of terms that are not variables.

Definition 6 (Transformation to Finite Variable Form). A matching problem mp is in finite
variable form if each e ∈ mp contains only variables of the same finite sort. A pattern problem
pp is in finite variable form if all matching problems mp ∈ pp are. We define

s→ as binary
relation on simplified matching problems, consisting of simplified forms of (decompose’) and
(clash’), and additionally the following:

{e} ⊎mp s→ mp if |e| = 1 (unique)

{e} ⊎mp s→ mp if the terms in e have sort ι and |ι| = 1 (card-1)
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We define
s⇒, similarly to ⇒, consisting of simplified forms of (simp-mp), (remove-mp),

and (success), and additionally the following rules:

pp
s⇒ Inst(pp, x) if {{x, t}} ∈ pp and t is not a variable (instantiate’)

pp ⊎ {{{t, t′} ⊎ e} ⊎mp} s⇒ {{{t, t′}} ∪ pp, {{{t′} ∪ e} ∪mp} ∪ pp} if e ̸= ∅ or mp ̸= ∅, and
exactly one of t and t′ is a variable (split)

pp ⊎ {{{x1, t1} ⊎ e1} ⊎mp1, . . . , {{xn, tn} ⊎ en} ⊎mpn} s⇒ {pp} if n > 0, xi ̸= ti for each i,

x1, . . . , xn, t1, . . . , tn are of sort ι and not in Var(pp), |{t1, . . . , tn}| < |ι| (card-large)

Finally, we define the non-deterministic relation
s⇒nd: pp

s⇒nd pp
′ iff pp

s⇒ P and pp′ ∈ P .

Lemma 7 (Phase Two: Switching to Finite Variable Form).

• The number of
s⇒nd-steps is polynomially bounded.

• If pp
s⇒!
nd pp

′ then pp′ is in finite variable form.

• pp is incomplete iff there is some pp′ such that pp
s⇒!
nd pp

′ and pp′ is incomplete.

Note that without the splitting and the restriction on the (instantiate’) rule we would not
achieve a polynomial bound: For a relaxed version where instantiation is allowed as soon as
some equivalence class contains two terms x and t where t is not a variable, one obtains an
exponential time and exponential space algorithm. In particular, pp1 in Example 5 can start
an exponentially long derivation with

s⇒nd using the relaxed version.

In phase three it remains to deal with pattern problems pp in finite variable form, i.e., every
e ∈ mp ∈ pp consists of variables of the same finite sort. Such a problem is pattern complete iff
for every substitution σ : V → T (C) there exists mp ∈ pp such that {x1, . . . , xn} ∈ mp implies
x1σ = · · · = xnσ. At this point the term structure is of no relevance any further, i.e., we can
switch from term substitution σ : V → T (C) to integer assignment α : V → Z. One only must
constrain the integer assignments to take the cardinalities of the sorts into account.

Definition 8 (Transformation to SMT Formula). Let pp be a pattern problem in finite variable
form such that Var(pp) = {y1 : ι1, . . . , yn : ιn}. We define the encoding ψ(pp) of pp as

ψ(pp) :=
( ∨

mp∈pp

∧

{x1,...,xn}∈mp
x1 = · · · = xn

)
∧

n∧

k=1

1 ≤ yk ≤ |ιk|.

To finalize the decision procedure, we just need some algorithm to decide the validity of
formula ψ(pp). Note that ψ(pp) can be expressed in well known logics such as integer difference
logic, linear integer arithmetic, or bit-vector arithmetic. It is well known that deciding validity
in each of these three logics is co-NP complete.

Lemma 9 (Phase Three: Deciding Completeness via SMT Solving). A pattern problem pp in
finite variable formis pattern complete iff ψ(pp) is valid in Z, and the validity is in co-NP.

Theorem 10. Pattern completeness is decidable in non-deterministic polynomial time.

Note that to arrive at Theorem 10 it does not suffice to just link the results of each phase
together. One also has to be careful about the arithmetic operations involved. In particular,
a direct computation of |ι| is too expensive, as |ι| might be double exponential in the number
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of constructors. For instance, if in Example 5 one adds a second constructor d : ι0 to ι0, then
|ι0| = 2, |ι1| = |ι0|2 = 4, |ι2| = |ι1|2 = 16, . . . , |ιn| = 22

n

.
Here, the key is to compute min(264, |ι|) instead of |ι| and then adjust the inference rules

and the implementation to work with these approximations of |ι|. For instance, condition
|{t1, . . . , tn}| < |ι| in (card-large) can be replaced by the sufficient criterion |{t1, . . . , tn}| <
min(264, |ι|). Note that in all practical cases, this sufficient criterion is precise enough, since
otherwise one would have to treat simplified pattern problems with at least 264 many terms.

3 Experiments

A full evaluation of the performance on linear pattern problems is already contained in the
FSCD paper. Since the new algorithm and the FSCD algorithm do not differ in their treatment
of linear problems, we just repeat the FSCD results here: our algorithm is significantly faster
than the following alternatives: the complement algorithm (implemented in AGCP [1]), a tree
automaton encoding (using FORT-h [7] as backend), and the pattern completeness check of the
ghc Haskell compiler.

YES NO

FSCD algorithm 120 123
NEW algorithm 211 300

For the non-linear case we utilized 300 pattern com-
plete inputs (YES) and 300 incomplete inputs (NO). The
performance of the FSCD algorithm (FSCD) and the new
algorithm of this paper (NEW) is summarized in the ta-
ble on the right. It displays the number of successful runs
with a timeout of 60 seconds for each input problem.

The overall interpretation of the data is easy: NEW
clearly outperforms FSCD. As a matter of fact, the example inputs contain many pattern
problems that have been detected as counter-examples to membership in co-NP for intermediate
versions of our algorithm. These examples—including Example 5—were produced when trying
to optimize the FSCD algorithm into one that has strong theoretical bounds, such as NEW.
The 89 problems that NEW could not solve within the time limit are all encodings of the pigeon
hole principle.

For further details on the experiments we refer to the website with supplementary material.

4 Future Work

We see some opportunities for future work. First, one can integrate an improved strategy
to select variables for instantiation, in particular since permutations in the input cause se-
vere differences in runtime. One can also try to further improve the implementation, e.g., by
following suggestions of Sestoft [10, Section 7.5] such as the integration of memoization. Sec-
ond, one might add counter-example generation into the formalization and into the verified
implementation. Third, it remains open whether a similar syntax directed decision procedure
for quasi-reducibility can be designed, i.e., where matching may occur in arbitrary subterms.
Fourth, one might consider an extension where it is allowed to add structural axioms to some
symbols such as associativity and commutativity. And finally, one can utilize this decision
algorithm, e.g., in order to develop a verified checker for ground confluence proofs for pattern
complete TRSs [1].

Acknowledgments We thank the anonymous reviewers for their constructive feedback.
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Abstract

Given a first-order theory Th, we say that a boolean combination F of atoms is Th-
feasible if there is a substitution σ such that σ(F ) is deducible from Th, i.e., Th ⊢ σ(F )
holds. Otherwise, F is infeasible. In the realm of (conditional) term rewriting, many
interesting problems can be treated as (in)feasibility problems: joinability of terms (and
critical pairs), reachability, reducibility, etc. This paper shows how general feasibility
problems can be handled now with the new version of the tool infChecker.

1 Introduction

Given terms s and t, the notion of “feasibility of a reachability problem” s→∗ t is well-known
in term rewriting. In this setting, instead of just checking whether s→∗

R t (reachability test), it
is often useful to check whether σ(s)→∗

R σ(t) holds for some substitution σ. This is often called
a feasibility test (for reachability). Accordingly, if no substitution σ satisfies the requirement,
then s →∗ t is said to be infeasible. This problem often arises when considering conditions
s ≈ t in the conditional part c of the rules ℓ → r ⇐ c of an oriented Conditional Term
Rewriting System R, where ≈ is interpreted as many-step rewriting, i.e., →∗. If the sequence
s1 ≈ t1, . . . , sn ≈ tn of conditions of c is proved infeasible (i.e., no substitution σ simultaneously
satisfies all of them), then the rule itself is said to be infeasible and it does not contribute to
the rewriting relation→R of R. For some purposes, e.g., for proving confluence or termination
of R, the rule can safely be removed from R. Thus, a number of tools have been developed to
prove infeasibility of a sequence of reachability problems, see [9, 10, 12, 14, 15] and also [11].

However, other interpretations of ‘≈’ are used in, e.g., join or semi-equational CTRSs, where
conditions s ≈ t are treated as joinability s ↓ t or conversion s↔∗ t, respectively [13, Definition
7.1.13]. In these cases, conditional rules can also be infeasible, but reachability tests are not
always useful to prove it. In order to overcome this problem, in [3] we rely on first-order logic
to provide a general notion of

• f-condition (an atomic formula, e.g., s→∗ t, s ↓ t, s↔∗ t,. . . ),

• f-sequence (of f-conditions, interpreted as a conjunction of atoms), and

• f-goal (interpreted as disjunctions of f-sequences).

These expressions F (viewed as boolean combinations of atoms as explained above) are said to
be feasible with respect to a given first-order theory Th if there is a substitution σ such that
Th ⊢ σ(F ) holds. Otherwise, F is said to be infeasible [3, Definition 1]. In this setting, the
(in)feasibility of sequences of goals s→∗ t, s ↓ t, or s↔∗ t can be homogeneously investigated
if predicate symbols →∗, ↓, ↔∗, etc., are defined by first-order sentences included in Th.

∗Partially supported by MCIN/AEI project PID2021-122830OB-C42 funded by
MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” and by the grant
CIPROM/2022/6 funded by Generalitat Valenciana.
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Table 1: Generic sentences of the first-order theory of a GTRS

Label Sentence
(Rf)▷◁ (∀x) x ▷◁ x
(Co)▷◁,▷◁

′
(∀x, y, z) x ▷◁ y ∧ y ▷◁′ z ⇒ x ▷◁′ z

(Pr)▷◁f,i (∀x1, . . . , xk, x′i) xi ▷◁ x′i ⇒ f(x1, . . . , xi, . . . , xk) ▷◁ f(x1, . . . , x
′
i, . . . , xk)

(HC)A⇐A1,...,An (∀x1, . . . , xp) A1 ∧ · · · ∧An ⇒ A
where x1, . . . , xp are the variables occurring in A1, . . . , An and A

In this paper, we report on the extension of the functionality of infChecker to fulfill the
theoretical framework in [3] which is sketched above. As described in [3, Section 5], the current
implementation of infChecker is able to deal with (join, oriented, or semi-equational) CTRSs
R, possibly including replacement restrictions as given by a replacement map µ, indicating
for each function symbol f of the signature, the arguments µ(f) on which rewritings can be
performed [6]. The first-order theory R associated to R is automatically generated by the tool,
according to [7, Section 3]. And, besides s→∗ t, s ↓ t, or s↔∗ t, infChecker is also able to deal
with s → t (one-step rewriting), s ↔ t (one-step rewriting or inverse rewriting), s � t (t is a
strict subterm of s), and the corresponding context-sensitive versions.

In order to exemplify the new use of the tool in a rewriting-based setting, we use Generalized
Term Rewriting Systems [7], extending CTRSs by the use of a replacement map µ and also by
allowing for more general conditions in rules, namely, atoms defined by a set of Horn clauses.

2 Generalized Term Rewriting Systems

A GTRS is a tuple R = (F ,Π, µ,H,R), where F (resp. Π) is a signature of function (resp.
predicate) symbols, with→,→∗∈ Π; µ is a replacement map; H is a set of definite Horn clauses
A ⇐ c, where the predicate symbol of A is not → or →∗; and R is a set of rewrite rules
ℓ→ r ⇐ c where ℓ is not a variable. In both cases, c is a sequence of atoms.

Example 1. The following GTRS R implements a test of evenness/oddity of numbers in
Peano’s notation through a “labeling” with symbols even and odd [8, Example 7].

isEven(0) (1)

isEven(s(s(n))) ⇐ isEven(n) (2)

0+ x → x (3)

x+ 0 → x (4)

x+ y → y + x (5)

test(x) → even(x)⇐ isEven(x) (6)

test(x) → odd(x)⇐ isEven(s(x)) (7)

Computations with GTRSs R are defined by deduction in a FO-theory [7, Section 7.3]:

R = {(Rf)→∗
, (Co)→,→∗} ∪ {(Pr)→f,i | f ∈ F , i ∈ µ(f)} ∪ {(HC)α | α ∈ H ∪R},

where (see Table 1), (Rf)→
∗
expresses reflexivity of many-step rewriting; (Co)→,→∗

expresses
compatibility of one-step and many-step rewriting; for each k-ary function symbol f and i ∈
µ(f), (Pr)→f,i enables the propagation of rewriting steps in the i-th immediate active subterm
t|i of a term t with root symbol f ; finally, for each Horn clause α ∈ H ∪ R, (HC)α provides
the usual implicative form. We often use (numeric or symbolic) labels α to refer to clauses
and rules A ⇐ c, written α : A ⇐ c. We write s →R t (resp. s →∗

R t) if R ⊢ s → t (resp.
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R ⊢ s→∗ t). Confluence of GTRSs R is investigated by means of conditional pairs (with label
π) π : ⟨s, t⟩ ⇐ c, where s and t are terms and c is a sequence of atoms [7, Section 5]. Then, π is

• R-(in)feasible (or just (in)feasible if no confusion arises) if c is R-(in)feasible.
• R-joinable (or just joinable) if for all substitutions σ, whenever R ⊢ σ(γ) holds for all
γ ∈ c, there is u such that σ(s)→∗

R u and σ(t)→∗
R u.

• Trivial, if s = t.

According to [7, Definition 59], given variable disjoint rules α : ℓ→ r ⇐ c and α′ : ℓ′ → r′ ⇐ c′,

• πα,p,α′ denotes the Conditional Critical Pair (CCP) ⟨θ(ℓ[r′]p), θ(r)⟩ ⇐ θ(c), θ(c′), where
p ∈ PosµF (ℓ) is a nonvariable active position of ℓ such that ℓ|p and ℓ′ unify with mgu θ.

• πα,x,p denotes the Conditional Variable Pair (CVP) ⟨ℓ[x′]p, r⟩ ⇐ x → x′, c, where x ∈
Varµ(ℓ) is an active variable of ℓ, p ∈ Posµx(ℓ) is an active position of x in ℓ, and x′ is a
fresh variable.

Two terms s and t are strongly joinable if there are terms u and u′ such that s→= u ∗← t
and s →∗ u′ =← t, where →= is → ∪ = [2, Definition 6.3.2]. Strong joinability of s and t is
equivalent to the feasibility of the sequence

s↓ →= z, s↓ →∗ z′, t↓ →∗ z, t↓ →= z′ (8)

where s↓ is the grounded version of s obtained by replacing each occurrence of a variable x in
s by a fresh constant cx, see, e.g., [1, page 224], and z and z′ are fresh variables. As explained
in [8, Example 13], confluence of R in Example 1 can be proved using [8, Theorem 1] if the
following CCPs are strongly joinable

π(3),Λ,(4) : ⟨0, 0⟩ (9)

π(3),Λ,(5) : ⟨x+ 0, x⟩ (10)

π(4),Λ,(5) : ⟨0+ x, x⟩ (11)

π(6),Λ,(7) : ⟨odd(x), even(x)⟩ ⇐ isEven(x), isEven(s(x)) (12)

The symmetric versions π(4),Λ,(3), π(5),Λ,(3), π(5),Λ,(4), and π(7),Λ,(6) of these CCPs are also
strongly joinable due to the symmetric definition of strong joinability above; thus, we do not
explicitly treat them.

Example 2. Strong joinability of the (nontrivial) unconditional pairs (10) and (11) is proved
by showing feasibility of each of the corresponding sequence (8), i.e.,

cx + 0→= z, cx + 0→∗ z′, cx →∗ z, cx →= z′ (13)

0+ cx →= z, 0+ cx →∗ z′, cx →∗ z, cx →= z′ (14)

Strong joinability of the conditional pair (12) is proved instead by showing the R-infeasibility
of the conditional part, i.e., of

isEven(x), isEven(s(x)) (15)

Two terms s and t are strongly ∥→-joinable if there are terms u, u′ such that s ∥→ u* ∥← t and
s ∥→∗ u′ ∥← t. We also need to prove that the following CVPs are strongly ∥→-joinable.

π(6),x,1 : ⟨test(x′), even(x)⟩ ⇐ x→ x′, isEven(x) (16)

π(7),x,1 : ⟨test(x′), odd(x)⟩ ⇐ x→ x′, isEven(s(x)) (17)
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Example 3. Both (16) and (17) are proved strongly ∥→-joinable by showing the infeasibility of
the corresponding conditional parts:

x→ x′, isEven(x) (18)

x→ x′, isEven(s(x)) (19)

In the following sections, we show how the new features added to infChecker are used to
obtain a mechanized proof of confluence of R in Example 1.

3 Input Format

To describe our theories in infChecker, we use the old block-based COPS format1, extending it
to handle the new capabilities of our tool.

A problem described using the original block-based COPS format includes a PROBLEM block,
which allows us to identify that we are dealing with an infeasibility problem rather than a
confluence problem; a CONDITIONTYPE block, if conditional rules are present, which lets us
choose whether the rewrite relation in the conditions is oriented, semi-equational, or join; a VAR

block, which identifies the variables of our rewrite system; a RULES block, which describes the
(possibly conditional) rules of our system; and finally, the infeasibility conditions to be analyzed,
consisting of two blocks: a VAR block that specifies the variables used in the conditions and a
CONDITION block with the infeasibility condition.

Additionally, in the previous version of our tool [3], we included the possibility of describing
the conditions of the rules using the following relations on conditions: one rewriting step (->),
one CS-rewriting step (\->), zero or more rewriting steps (->*), zero or more CS-rewriting steps
(\->*), one or more rewriting steps (->+), one or more CS-rewriting steps (\->+), subterm (|>=)
and strict subterm (|>), joinability (->*<-), CS-joinability (\->*<-/) one convertibility step
(<-->), one CS-convertivility step (<-/\->), zero or more convertibility steps (<-->*) and zero
or more CS-convertibility steps (<-/\->*). Furthermore, for teaching purposes, we recently
added the following relations: zero or one rewriting step (->=) and zero or one CS-rewriting
step (\->=).

To extend the capabilities of our tool, we have continued expanding the types of conditions
we can handle and have introduced three new types of blocks:

• The EQUATIONS block allows us to describe equations, which can be conditional. Such
conditions can also be equations or any other type of condition accepted by the rules.

• The HORN-CLAUSES block allows us to describe predicates as Horn clauses. As with equa-
tions, the conditions of our Horn clause can be atoms or any other type of condition
accepted by the rules.

• The FO-THEORY block allows us to describe a formula in first-order logic using the operators
∼ (not), /\ (and), \/ (or), => (implies) and <=> (if and only if). The atoms of the formula
can be any type of condition accepted by the rules.

• The system’s conditions, besides including the previously described relations, may contain
equations and predicates, but not first-order formulas.

The full syntax of our input is described in Figure 1.
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infproblem ::= (PROBLEM INFEASIBILITY)

rew-crew [(VAR idlist)] (CONDITION condlist)

[(COMMENT string)]

rew-crew ::= rew | crew | cs-rew | cs-crew

rew ::= [(VAR idlist)] [(FO-THEORY formulalist)]

[(HORN-CLAUSES predlist)] [(EQUATIONS eqlist)]

(RULES rulelist) [(COMMENT string)]

crew ::= (CONDITIONTYPE ctype) [(VAR idlist)]

[(FO-THEORIES formulalist)] [(HORN-CLAUSES predlist)]

[(EQUATIONS eqlist)] (RULES crulelist) [(COMMENT string)]

cs-rew ::= [(VAR idlist)] repmap [(FO-THEORIES formulalist)]

[(HORN-CLAUSES predlist)] [(EQUATIONS eqlist)]

(RULES rulelist) [(COMMENT string)]

cs-crew ::= (CONDITIONTYPE ctype) [(VAR idlist)] repmap

[(FO-THEORIES formulalist)] [(HORN-CLAUSES predlist)]

[(EQUATIONS eqlist)] (RULES crulelist) [(COMMENT string)]

idlist ::= ϵ | id idlist

repmap ::= (REPLACEMENT-MAP cslist) | (CONTEXTSENSITIVE csstratlist)

rulelist ::= ϵ | rule rulelist

rule ::= term -> term

crulelist ::= ϵ | crule rulelist

crule ::= term -> term | term -> term | condlist

eqlist ::= ϵ | eq eqlist

eq ::= term = term | term = term | condlist

ctype ::= SEMI-EQUATIONAL | JOIN | ORIENTED

condlist ::= cond | cond, condlist

cond ::= term == term | term extrel term | term

term ::= id | id(termlist)

termlist ::= term | term, termlist

formulalist ::= formula | formula formulalist

formula ::= pred | ~formula | formula /\ formula | formula \/ formula

| formula => formula | formula <=> formula

predlist ::= pred | pred predlist

pred ::= term | term | cond

cslist ::= fun | fun cslist

csstratlist ::= ϵ | (id intlist) csstratlist

intlist ::= ϵ | int intlist

fun ::= (id intlist)

intlist ::= ϵ | int, intlist

extrel ::= -> | \-> | ->= | \->= | ->* | \->* | ->+ | \->+ | |>= | |>

| ->*<- | \->*<-/ | <--> | <-/\-> | <-->* | <-/\->* | =

Figure 1: Extended COPS format

Example 4. The GTRS R in Example 1 is encoded as in Figure 2. The feasibility conditions
in Examples 2 and 3 as follows: Strong joinability of CCPs (10) and (11) as the feasibility of:

(VAR x x’ z z’)

(CONDITION add(cX,0) ->= z, add(cX,0) ->* z’, cX ->* z, cX ->= z’ )

and

(VAR x x’ z z’)

(CONDITION add(0,cX) ->= z, add(0,cX) ->* z’, cX ->* z, cX ->= z’ )

The infeasibility of CCP (12) as the infeasibility of:

1http://project-coco.uibk.ac.at/problems/
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(VAR x y)

(HORN-CLAUSES

isEven(0)

isEven(s(s(x))) | isEven(x)

)

(RULES

add(0,x) -> x

add(x,0) -> x

add(x,y) -> add(y,x)

test(x) -> even(x) | isEven(x)

test(x) -> odd(x) | isEven(s(x))

)

Figure 2: Encoding of the GTRS in Example 1

(VAR x)

(CONDITION isEven(x), isEven(s(x)) )

The infeasibility of CVPs (16) and (17) as as the infeasibility of:

(VAR x x’)

(CONDITION x -> x’, isEven(x) )

and

(VAR x x’)

(CONDITION x -> x’, isEven(s(x)) )

The proof of strong joinability of CCPs (10) and (11) above has benefitted from the following
observation, which follows from [3, Section 3]: the (in)feasibility of an f -goal F with respect
to a theory Th consisting of implicative sentences (∀x⃗)B1 ∧Bn ⇒ B (or definite Horn clauses
B ← B1, . . . , Bn) only depends on the sentences in Th defining predicates P occurring in
F as atoms P (t1, . . . , tk), i.e., such that P (t1, . . . , tk) = σ(B) for some substitution σ and
also (recursively) on sentences in Th defining predicates in B1, . . . , Bn. Then, we collect such
sentences as a subtheory Th↓F of Th and equivalently solve the (in)feasibility problem of F
with respect to Th↓F . This has been implemented in the current version of infChecker and
advantageously used to check strong joinability of (10) and (11) within a 60s. timeout.

4 Conclusions

We have improved our tool infChecker to give full support to the general notion of feasibility
developed in [3]. We have extended the COPS format for CTRSs with new sections to introduce
first-order theories Th with respect to which a sequence of atoms in the usual section CONDITION

is checked to prove or disprove feasibility. In particular, we can use infChecker now to give
support to the analysis of confluence and termination of GTRSs. Regarding future work, we
plan to extend our confluence and termination tools CONFident [5] and mu-term [4], which
use infChecker as an auxiliary tool, to improve its ability to prove and disprove confluence
and termination of GTRSs. For instance, as shown in Example 4, with the new version of
infChecker we could obtain a proof of confluence of R in Example 1 by using an improved
version of CONFident. We also plan to handle the new ARI format of CoCo.
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Abstract
Despite sixty percent of Newman’s seminal 1942 paper being devoted to residual theory,

that remains obscure due to that his instantiation of the theory there to the (non-erasing)
λβ-calculus was fatally flawed. We redeem the approach showing: 1) any rewrite system in-
stantiating his theory induces a so-called 1-ra, an axiomatically orthogonal rewrite system,
entailing co-initial reductions have least upperbounds; 2) the rewrite system underlying
any (non-erasing) syntactically orthogonal TRS instantiates his theory. CC by 4.0 L M.

Rewriting The primary notion in rewriting is from [17]1: a rewrite system→:=⟨O,S, src, tgt⟩
comprises objects O and steps S with source, target maps src, tgt from the latter to the for-
mer [26, Def. 8.2.2]. Steps ϕ, ψ are co-initial if src(ϕ) = src(ψ), co-final if tgt(ϕ) = tgt(ψ)
and parallel to each other if both. A morphism from → to →′ := ⟨O′,S ′, src′, tgt′⟩ preserves
structure; it maps ϕ ∈ S with source a and target b, denoted by ϕ : a → b, to ϕ′ : a′ → b′ in
S ′. Rewrite properties [2, 26] pertain to various rewrite systems constructed from →. E.g., the
Church–Rosser property [5, 17] expresses that for any conversion there exists a valley of co-final
reductions parallel to it, with (finite) reductions and conversions rewrite systems constructed
from →. As constructions here we will use the 1-operations of loop 1, composition ·, reverse
−1 and residuation /, where by a 1-operation we mean an operation respecting sources and

⇓ ϕ ψ

ϕ · ψ

ϕ

ϕ−1

a

1a

ψ

ϕ / ψψ / ϕ

ϕ

⇓
⇓

⇓

Figure 1: Step-forming operations: residuation /, loop 1, composition ·, reverse −1

targets as depicted by their generalised arities [22, Ex. 5.3] in Fig. 1. E.g., composition has
two consecutive steps as input (the full arrows) and a single step as output (the dashed arrow),
parallel to each other as depicted. That is, for each 1-operation its input arity is the universally
quantified (full) subsystem, and its output arity is the existentially quantified (dashed) subsys-
tem. The steps in the input arity of composition being consecutive captures that composition
is only defined on consecutive steps, i.e. if tgt(ϕ) = src(ψ) for steps ϕ, ψ. Similarly, residuation
/ requires co-initial steps in its input.

1-algebras To algebraically deal with 1-operations requires to enrich universal algebra. Where-
as 1, · and −1 and laws for them (see Def. 1) are known to be covered by essentially algebraic
theories [20, Ex. 4], the generalisations needed to smoothly deal with / are in statu nascendi [22].
Acknowledging this, we refer to algebras having a rewrite system→ as carrier and 1-operations
among those in Fig. 1 as 1-algebras. This allows to reuse, as we do, terminology from algebra.

1In Newman’s combinatorial topology-inspired words: We are concerned with two kinds of entities, “objects”
and the “moves” performed on them, and each move is associated with two objects, “initial” and “final.”
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l-unit(ϱ) : 1 · ϱ ⇒ ϱ invol-id : 1−1 ⇒ 1
r-unit(ϱ) : ϱ · 1 ⇒ ϱ anti-auto(ϱ, ς) : (ϱ · ς)−1 ⇒ ς−1 · ϱ−1

assoc(ϱ, ς, ζ) : (ϱ · ς) · ζ ⇒ ϱ · (ς · ζ) invol(ϱ) : (ϱ−1)−1 ⇒ ϱ

Table 1: 1-algebra laws / proofterm rewrite rules

Definition 1. A 1-monoid is a 1-algebra with 1-operations 1 and · satisfying the (pertaining)
laws in Tab. 1.2 We use ↠ to denote (the carrier of) the free 1-monoid induced by → and
refer to its elements as reductions [26, Def. 8.2.10]. A 1-involutive 1-monoid is a 1-algebra with
1-operations 1, · and −1 satisfying the laws in Tab. 1.2. We use ↭ to denote (the carrier of)
the free 1-involutive 1-monoid, cf. [7], induced by → and refer to its elements as conversions.

Example 1. Any algebra can be viewed as a 1-algebra by viewing its carrier as a single-object
rewrite system having a step on it for each element of the algebra. Accordingly, algebra examples
of 1-monoids are ⟨Z, 0,+⟩ and ⟨N, 0,+⟩, and algebra examples of 1-involutive 1-monoids are
⟨Z, 0,+, (−)⟩ and ⟨N, 0,+, id⟩. A 1-algebra example is (finite) walks in a graph with operations
empty, composition, and reverse, or more generally paths in space.

Freeness of ↠ means that any morphism from → to a 1-monoid factors into a morphism
from → to ↠ and (a 1-monoid preserving) one from ↠ to the 1-monoid, and similarly for ↭.

Example 2. The length-morphism maps each step ϕ to 1 in the involutive monoid ⟨N, 0,+, id⟩.
It factors through mapping the step ϕ to the conversion ϕ, and so does the relation-morphism
mapping ϕ to (src(ϕ), tgt(ϕ)) in the equivalence closure, convertibility, of the rewrite relation of
→, equipped with the expected operations. Similarly, that same morphism into the reflexive–
transitive closure, reducibility, factors through mapping the step ϕ to the reduction ϕ.

(1-involutive) 1-monoids are (dagger) categories, and them being essentially algebraic means
that free such can be defined syntactically [20]: letting the operations 1, · and −1 double as
function symbols of arities 0, 2 and 1, one can inductively build terms from the steps of →
respecting sources and targets. Such terms we refer(red) to as proofterms [26, Ch. 8] as they
are terms that can be conceived of as proofs (of reducibility of their source and target in case
of ↠ and of their convertibility in case of ↭) in (sub-)equational logic(s) [18] induced by
→. To quotient out the (pertaining) laws from proofterms, one may use (proof)term rewriting
itself: orienting the laws into rules on proofterms as in Tab. 1 yields a complete (confluent and
terminating) (proof)term rewrite system ⇒, with a ⇒-normal form being either a single 1 or
a right-branching ·-tree of (reversed) →-steps, i.e. ⇒-normal forms are in 1–1 correspondence
with the usual notion of a reduction (conversion) as sequence of forward (and backward) →-
steps [5, 26]. This then allows to define the 1-operations 1, · (and −1) on reductions (and
conversions) as the proofterm-forming operation of applying the corresponding function symbol
followed by ⇒-normalisation [7, App. A].

Example 3. As running example we employ Kleene’s rewrite system→ [26, Fig. 1.2] comprising
the four steps ϕ :a→ a′, ϕ′ :a′ → a, ψ :a→ b, and χ :a′ → c. Then ϕ ·ψ is not a proofterm since
the target a′ of its 1st step ϕ is distinct from the source a of its 2nd step ψ. Among proofterms
ϱ := (ϕ′−1 · ϕ−1)−1, ϱ′ := ϕ · ϕ′, ς := (ϕ′ · ϕ) · ϕ−1 and ς ′ := ϕ′ · (ϕ · ϕ−1), both ϱ′ and ς ′ are
conversions, but only the former is a reduction. Because both ϱ and ς are ⇒-reducible neither
is a conversion; their ⇒-normal forms are, ϱ′ and ς ′.

2 For the moment reading the proofterm rewrite rules as laws (symmetrically) for the 1-operations. We have
left the assumptions [20, Ex. 4] on sources and targets of ϱ, ς, ζ and 1 implicit, to stress similarity with algebra.
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Orthogonality We recast the diamond and cube properties, cf. [26, Sec. 8.7], 1-algebraically.

Definition 2. → has the diamond property (DP), if for all co-initial ϕ, ψ, there exist co-final
ψ′, ϕ′ such that ϕ

ψ′⋄ψϕ′ , where ϕ
ψ′⋄ψϕ′ denotes that ϕ, ψ, ψ′, ϕ′ constitute a diamond : src(ϕ) =

src(ψ)& tgt(ϕ) = src(ψ′)& tgt(ψ) = src(ϕ′)& tgt(ψ′) = tgt(ϕ′). → is confluent if ↠ has the DP.

(ϕ / ψ) / (χ / ψ) = (ϕ / χ) / (ψ / χ)

ϕ / ψ χ

ϕ

ψ

ϕ

ψ

ψ / ϕ

Figure 2: The diamond property (⋄; left) vs. the cube property (�; right)

Using that a peak (valley) [5] is a conversion of shape ←·→ (→·←), DP expresses that for
every peak there exists a valley parallel to it. Using a skolem-function / (residuation in Fig. 1)
to witness ψ′ by ψ/ϕ and ϕ′ by ϕ/ψ,3 DP can be expressed 1-algebraically as: for all co-initial
ϕ, ψ, ϕ

ψ/ϕ⋄
ψ
ϕ/ψ. Thus, → has the DP iff ⟨→, /⟩ is a 1-algebra for some residuation /.

Example 4. In Ex. 3, for the ↠-peak ψ−1 · ϕ the ↠-valley ψ−1 · ϕ′−1 is parallel to it, but →
is not confluent since for the peak ψ−1 · (ϕ ·χ) there is no valley (b and c are →-normal forms).

In [17, Sec. 1], Newman explained confluence of a rewrite system→ in terms of its reducibility
quasi-order ↠ having upperbounds. He left the determination of conditions required for having
least upperbounds for later. We put forward such conditions in [26, Sec. 8.7] in the form of the
laws on residuation in Tab. 2, proposing to call any rewrite system satisfying (1)–(4) orthogonal,
cf. [15, 9] (Fig. 2 depicts law (4) going back to [17, Thm. 5(∆4)] dubbed cube in [13, Lem. 2.2.1]).
Here we recast that account 1-algebraically to then instantiate it in the next sections.

ϕ / 1 = ϕ (1)
ϕ / ϕ = 1 (2)
1 / ϕ = 1 (3)

(ϕ / ψ) / (χ / ψ) = (ϕ / χ) / (ψ / χ) (4)

χ / (ϕ · ψ) = (χ / ϕ) / ψ (5)
(ϕ · ψ) / χ = (ϕ / χ) · (ψ / (χ / ϕ)) (6)

1 · 1 = 1 (7)

Table 2: Laws of a 1-ra (left) and of a 1-rac (also right)

Definition 3. A 1-residual algebra (1-ra) is a 1-algebra ⟨→, 1, /⟩ such that (1)–(4) in Tab. 2
hold. A 1-rac (1-ra with composition) is a 1-algebra ⟨→, 1, /, ·⟩ such that (1)–(7) hold.

Example 5. ⟨N, 0, −̇,+⟩ is a 1-rac, so ⟨N, 0, −̇⟩ is a 1-ra, for −̇ monus (cut-off subtraction).

In a 1-ra(c) there is a natural order on co-initial steps given by ϕ ⪯ ψ := (ϕ/ψ = 1). Quoti-
enting out ⪯∩⪰ yields a 1-ra(c) again whose natural order is a partial order [26, Lem. 8.7.25(iii)
and 8.7.41(ii)]. Key to referring to a rewrite system → constituting a 1-ra as being orthogonal,
is that any such induces a 1-rac on ↠ [26, Lem. 8.7.47], which then has least upperbounds [26,
Exc. 8.7.40(ii)]. This is characterised, using categorical language to be (ex/comp)act, by:

Theorem 1 (cf. [25, 15, 21]). ⟨→, 1, /, ·⟩ is a 1-rac whose natural order is a partial order, where
ϕ / ψ := ϕ′ for every peak ϕ, ψ and its pushout valley ψ′, ϕ′ (in the categorical sense) iff
⟨→, 1, ·⟩ is a 1-monoid that is left-cancellative (each χ is epi: for all ϕ, ψ, if χ · ϕ = χ · ψ then
ϕ = ψ), gaunt (isomorphisms are 1) and has pushouts; i.e. lubs of peaks exist.

3We a priori get 2 skolem-functions, f(ϕ, ψ) for ψ′ and g(ϕ, ψ) for ϕ′, but may assume f(ϕ, ψ) = g(ψ, ϕ).

47



Redeeming Newman; orthogonality in rewriting 1-algebraically V. van Oostrom

Redeeming Newman In 1942 in [17], Newman refactored the proof of the Church–Rosser
property for the λI-calculus in [5], by abstracting from the λ-term-structure of objects, factoring
the proof through an axiomatisation of a function | entailing confluence [17, Sec. 8–12], and
showing the axioms to be satisfied for the λI-calculus [17, Sec. 13,14]. The latter was later
found to be erroneous [23] due to confusing variables when working with λ-terms modulo α-
equivalence.4 We redeem his approach, showing in this section his main result [17, Thm. 5]
factors through orthogonality, and in the next that it applies to (non-erasing) OTRS. To present
his result,5 let | yield for co-initial ϕ, ψ a (finite) set ϕ|ψ of→-steps from tgt(ψ), the ψ-derivates
of ϕ; it lifts to (finite) sets Φ of steps by Φ|ψ:=⋃

ϕ∈Φ ϕ|ψ and to reductions by Φ|(ϱ·ψ):=(Φ|ϱ)|ψ
and Φ |1 :=Φ. A development of Φ is a→-reduction in which only derivates of steps in Φ occur
and no remain [5, 3, 26]. Using Newman’s notions and our notations, his result reads:

Theorem 2 ([17]). For co-initial reductions ϱ, ς and set of steps Φ, there are reductions ς ′, ϱ′
such that ϱ

ς′⋄ςϱ′ and Φ | (ϱ · ς ′) = Φ | (ς · ϱ′) if axioms ∆1–∆4 hold and J1,J2 for a predicate J :

(∆1) ϕ | ψ = ∅ iff ϕ = ψ;
(∆2) if ϕ ̸= ψ, then (ϕ | χ) ∩ (ψ | χ) = ∅;
(∆3) if ϕ ̸= ψ, then there exist co-final developments ϱ of ψ | ϕ, and ς of ϕ | ψ;
(∆4) for ϱ and ς in (∆3), χ | (ϕ · ϱ) = χ | (ψ · ς);
(J1) If ϕ J ψ, then ϕ | ψ has precisely one member;
(J2) If ψ1 ∈ ϕ1 | χ and ψ2 ∈ ϕ2 | χ, and if ϕ1 J ϕ2 or ϕ1 = ϕ2, then ψ1 J ψ2 or ψ1 = ψ2.

Let the parallel rewrite system q−→ have as objects the objects of →, and a step Φa if Φ is
a set of steps at a that is a J-set [17, p. 232]: (distinct) steps in Φ are from a and pairwise
J-related. Then the source of Φa is a and its target is the target of a development of Φ.

Lemma 1. Under the assumptions of Thm. 2, ⟨ q−→, ∅, |⟩ is a 1-ra, so q−→ is orthogonal.

Proof. That q−→ is well-defined, i.e. that Φa has a unique target holds by [17, Lem. 2]. [17,
Lem. 5.1] shows both that | is a residuation (Fig. 1) for q−→, so q−→ has the DP, and that it
has the cube property, i.e. law (4) holds. Laws (1)–(3) are seen to hold by easy inductions.

Proof of Thm. 2. As →-reductions are (singleton) q−→-reductions and the 1-ra on q−→ induces
a 1-rac on q−→−→ by the previous section,6 one concludes by setting ς ′ := ς | ϱ and ϱ′ := ϱ | ς.

Steps-as-terms To apply Thm. 2 to a term rewrite system [2, 26] T := ⟨Σ, P ⟩ given by a
signature Σ and a set P of rules ρ:ℓ→r for ℓ, r terms over function symbols in Σ (and variables),
we let its multistep rewrite system ◦−→T have as objects terms over Σ and steps-as-terms, i.e.
as steps terms over Σ ⊔ P , with src (tgt) the homomorphic extension of the function mapping
rule symbols to their left-(right-)hand side. The parallel rewrite system q−→T and (single step)
rewrite system →T arise from ◦−→T by restricting rule-symbols to occur at parallel positions
respectively once in steps [26, Prop. 8.2.22]. We employ that q−→T is orthogonal (in the above
sense) if T is an OTRS, a TRS that has left-linear and non-overlapping rules [2, 26], i.e. that the
residuation / given in [26, Def. 8.7.4] induces a 1-ra on q−→T [26, Prop. 8.7.7(ii)] for OTRS.

Lemma 2. For an OTRS T , the assumptions of Thm. 2 hold for →T when:

• defining ϕ J ψ if ϕ, ψ are steps (whose rule symbols are) at parallel positions; and
4It being the first of its kind, the error could be called the α-α-error (lucerne-error?).
5See [17] for more. We present Newman’s axioms and result as is, as our only goal is to instantiate them.
6Alternatively, this can be concluded from that the assumptions of Thm. 2 entail properties 1–4 of [15].
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• letting ϕ | ψ be the set of steps occurring in (the parallel step) ϕ / ψ.

Proof. That the axioms hold follows from well-known facts for parallel steps in OTRS [2,
26], e.g., J2 corresponds to the Disjointness Property in [26, Ex. 8.6.30] and ∆4 to cube [13,
Lem. 2.2.1], permutation [15]. (Using steps-as-terms, the axioms can also be verified by
inductions on steps.) Note that non-erasingness is (only) needed for ∆1, cf. [26, Ex. 8.7.24].

Conclusions We ruminate about the past, present and future of orthogonality.

Past (the curious case of orthogonality in rewriting) It is curious that Newman starts
out [17] with stating to leave the study of least upperbounds (lubs) for later, to then devote
most of the paper to introducing conditions that guarantee the very existence of lubs, as shown
above (Lem. 1). That reductions constitute a lattice (have lubs) was shown only much later (in
the 70s) for concrete rewrite systems such as recursive programs and the λβ-calculus, see [13],
subsequently axiomatised and couched in categorical language (existence of pushouts) in [25,
15, 21]. Here we cast our account of that [26, Sec. 8.7] 1-algebraically (Def. 3 and Thm. 1).

β(x, y, z) :B xy z → x (y z) γ(x, y, z) : C xy z → x z y ι(x) : I x → x

Table 3: Combinatory Logic: term rewrite rules P of BCI in applicative notation

Example 6 (illustrating that lubs are subtle to define). BCI is the TRS with signature Σ :=
{B,C, I,@} and rules P := {β, γ, ι} (Tab. 3). Since the rules of the Combinatory Logic BCI
in Tab. 3 are left-linear and non-overlapping, q−→BCI is orthogonal by the above. Consider
the peak I x ϕ← I (I x) →ψ I x for the steps ϕ := ι(I x) and ψ := I ι(x). (Note that ϕ, ψ are
extensionally the same but not intensionally so.) The lub (pushout) of the peak is formed not
by the empty valley from I x, but by the valley comprising twice the step ι(x) : I x →BCI x
since ψ /ϕ = ι(x) = ϕ/ψ. That is, that ϕ, ψ are intensionally different, perform different work,
constitute a syntactic accident [13, p. 34], is reflected in their pushout (lub) not being empty.

Despite the prominence of Combinatory Logic and the λβ-calculus since the 30s, it took
until the 80s to clepe them orthogonal term rewrite systems, making them in retrospect the 1st

and 2nd (1st and 2nd-order) such. But that definition of orthogonality is syntactic, asks rule(s)
to be left-linear and non-overlapping [2, 26], pertains to terms only. That led to the second
curiosity that on the one hand many structured rewrite systems having lubs, e.g., interaction
nets [12], braids [16], self-distributivity [24], . . . were not covered by that syntactic definition,
and that on the other hand that syntactic definition was found to be lacking, to not guarantee
confluence let alone existence of lubs, already for minor generalisations of term rewriting:

Example 7. The rules a→ b and f(x)→ c⇐ x = a are left-linear and non-overlapping but not
even confluent as witnessed by both f(b) and c being normal forms in the peak f(b)← f(a)→ c.

Whence we propose(d [26, Sec. 8.9]) to factor the syntactic definition of orthogonality
through its associated rewrite system being orthogonal, to constitute a 1-ra (Def. 3), mak-
ing it interesting to see whether for systems in the literature the former entails the latter. For
orthogonal TRS and PRS this is known to be the case [26, Sec. 8.7][4] by associating ◦−→T to
T with the proof unifying [5] with axiomatic [17] and inductive [3, Sec. 3.2] (TML) proofs. By
steps-as-terms being conceptually parsimonious the residuation-based proof is superior to TML,
which is based on ad hoc prooftrees, as we illustrate for BCI in Ex. 8. Ex. 9 exemplifies that
for certain context-sensitive and conditional TRS, orthogonality indeed induces orthogonality.
We leave it to future research to check other syntactically orthogonal systems in the literature.
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Example 8 (orthogonality of ◦−→BCI for OTRS BCI). The (proof )terms ϕ:=B I γ(C, x, y) ι(z)
and ψ :=β(I, C C x y, I z) yield a peak B I (C y x) z q←−ϕ B I (C C xy) (I z)→ψ I (C C xy (I z))
for which residuation (per [26, Def. 8.7.4]) yields the valley B I (C y x) z →ψ′ I (C y x z) q←−ϕ′

I (C C xy (I z)), the lub (pushout) of ϕ, ψ, formed by (proof )terms ψ′ := ψ / ϕ := β(I, C y x, z)
and ϕ′ := ϕ / ψ := I (γ(C, x, y) ι(z)), as one may check in Haskell or ProTeM.

Example 9. ⟨ ◦−→, 1, /⟩ is a 1-ra for / as in Ex. 8 [26, Def. 8.7.4], if steps ϕ are restricted by:7

(i) for CSR as in [14, Thm. 8.12]: all frozen arguments are Σ-terms, or
(ii) for orthogonal normal CTRS [26, Sec. 4.11.2]: if ϕ = ρ(ϕ⃗) for rule ρ(x⃗) : ℓ→ r ⇐= −−−→ℓ↠ r,

then for all j, ℓσj ↠ rσj (observe rσj = rj by normality), where σ(xi) := src(ϕi) for all i.

Present (inappropriate appropriation) Rewrite systems being basic small wonder they
occur elsewhere nowadays, e.g., as multidigraphs, quivers in representation theory [8], pre-
categories in Garside theory [6] or 1-polygraphs in higher-dimensional group presentations [1].
As much as we would like to base ourselves on [6, 1], we cannot as both accounts are inadequate
for our key notions conversion and residuation. More generally, subsystems [18] (↔ and →+,
the free 1-algebras with −1 respectively · satisfying the laws in Tab. 1) and supersystems [26]
(infinit(e/ary) reductions) are absent from them, and so is (must be) classical rewrite theory.

l-inv(ϱ) : ϱ−1 · ϱ ⇒ 1 l-inv-x (ϱ, ς) : ϱ−1 · (ϱ · ς) ⇒ ς
r-inv(ϱ) : ϱ · ϱ−1 ⇒ 1 r-inv-x (ϱ, ς) : ϱ · (ϱ−1 · ς) ⇒ ς

Table 4: 1-algebra laws / proofterm rewrite rules for 1-groups, extending Tab. 1

Remark. Modelling conversions as↔-reductions is too weak, so 1-polygraphs are [11, Sec. 2.4],
as categories (1-monoids) miss out on involution [7],8 and assuming cancellation is too strong [17,
Sec. 1], as groupoids (1-groups; see Tab. 49) lose embedding [19]. Indeed, [6, 1] have algebraic
accounts of neither conversion nor residuation, so cannot account for orthogonality, 1-ra’s (hav-
ing composition without residuation is analogous to having addition without monus; we do not
know of other accounts where both are treated on a par, algebraically, as we think they should).

Future (explorations) (I) We restricted attention to the axioms in [17] for the non-erasing
λβ-calculus; (∆1). These entail additional properties, e.g., the natural order on q−→-steps is the
subset order, all developments have the same length [19], and → is normalising (WN) iff it is
terminating (SN) [17, Thm. 8][26, Thm. 4.8.5]. Which are retained for the axioms in [17] for the
(erasing) λβ-calculus? orthogonality? (II) Does meta-theory such as that the full ◦−→-strategy
is (hyper-)normalising, generalise? (III) Does viewing a proof order (see [26, Thm. 7.5.12])
as a morphism from conversions into a (well-founded) 1-involutive 1-monoid have advantages
beyond those in [7]? (IV) Does the approach generalise to infinit(e/ary) reductions? (V)
Can the Grothendieck group construction be based on orthogonality? (VI) How to formalise
this algebraic approach, in particular residuation, cf. [10]? (VII) How to generalise proofs via
steps-as-terms to other structures, e.g., to steps-as-port-graphs for interaction nets [12].

Acknowledgments We thank Nao Hirokawa, Vítek Jelínek, Philip Saville and Fer-Jan de
Vries for discussions and feedback on a previous version, and the IWC reviewers for reviews.

7As before5, we refer the reader to the cited literature for more, for reasons of room.
8Involution is essential and useful ; it saved half the work in formalising [7] (B. Felgenhauer; pers. comm.).
9The proofterm rewrite rules are obtained by 1-completion, see Ch. 7 of either [2, 26]: though l-inv-x and

r-inv-x are derivable they need to be adjoined to turn ⇒ into a complete proofterm rewrite system.
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The next few pages in these proceedings contain the descriptions of the tools participating in
the 14th Confluence Competition (CoCo 2025). CoCo is a yearly competition in which software
tools attempt to automatically (dis)prove confluence and related properties of rewrite systems
in a variety of formats. For a detailed description we refer to [1]. This year there were 15 tools
(listed in order of registration) participating in 5 categories (listed in order of first appearance
in CoCo):

TRS CTRS INF CSR LCTRS

Grackle-CSI ✓

crest ✓

Natto ✓

AProVE ✓

Hakusan ✓

CONFident ✓ ✓ ✓

infChecker ✓

CeTA ⋆ ⋆

ACP ✓ ✓

CO3 ✓ ✓

CRaris ✓

FORT-h ✓

CSI ✓

FORTify ⋆

SOL ✓

Since 2024 CoCo adopts the ARI1 format for input problems. Tools producing certifiable output
in a specific category team up with a certifier and participate as combination in that category.
The certifiers in CoCo 2025 are CeTA and FORTify. The latter teamed up with FORT-h. The
former with ACP, CSI and Hakusan in the TRS category, and with Natto in the INF category.

The winning (for combined YES/NO answers) tools2 of CoCo 2024 participated as demon-
stration tools, to provide a benchmark to measure progress. The live run of CoCo 2025 on
StarExec [2] Miami can be viewed at

1https://project-coco.uibk.ac.at/ARI/
2They are not listed in the table but see http://project-coco.uibk.ac.at/2024/results.php.

52



Confluence Competition 2025 CoCo SC

https://ari-cops.uibk.ac.at/liveview?comp=CoCo.2025.competition

Further information about CoCo 2025, including a description of the categories and detailed
results, can be obtained from http://project-coco.uibk.ac.at/2025/.

Acknowledgements The CoCo steering committee is grateful to Geoff Sutcliffe for making
StarExec Miami available for CoCo 2025.
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CSI is an automatic tool for establishing or refuting confluence and related properties of
first-order term rewrite systems (TRSs). Development of the tool commenced in 2010. The
name “CSI” is derived from the confluence of the Sill and Inn rivers in Innsbruck. The tool
is available at: http://cl-informatik.uibk.ac.at/software/csi. A detailed description of
CSI can be found in [3, 2].

Grackle-CSI [4] builds upon CSI but introduces a new strategy invented by a general-purpose
strategy optimizer Grackle [1]. Empirical experiments demonstrate that the invented strategies
can (dis)prove more TRSs in ARI-COPS than CSI’s competition strategy for CoCo 2024 while
maintaining the same computation budget. The code is available at: https://github.com/
Zhang-Liao/grackle-csi.

Grackle-CSI will participate in the TRS category of CoCo 2025.

References
[1] Mikoláš Janota Jan Hůla, Jan Jakubův and Lukáš Kubej. Targeted configuration of an smt solver.

In International Conference on Intelligent Computer Mathematics, pages 256–271. Springer, 2022.
[2] Julian Nagele, Bertram Felgenhauer, and Aart Middeldorp. Csi: New evidence–a progress report.

In International Conference on Automated Deduction, pages 385–397. Springer, 2017.
[3] Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp. Csi–a confluence tool. In Automated

Deduction–CADE-23: 23rd International Conference on Automated Deduction, Wrocław, Poland,
July 31-August 5, 2011. Proceedings 23, pages 499–505. Springer, 2011.

[4] Liao Zhang, Fabian Mitterwallner, Jan Jakubuv, and Cezary Kaliszyk. Automated strategy inven-
tion for confluence of term rewrite systems. arXiv preprint arXiv:2411.06409, 2024.

54



CoCo 2025 Participant: crest 1.0∗
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The Constrained REwriting Software Tool (crest, for short) is a tool for automatically
proving (non-)confluence of logically constrained rewrite systems (LCTRSs). The development
of crest started in the beginning of 2023 as part of the ARI project1 and initial experiments
were presented at CADE-29 in 2023 [4]. More information and executables of crest can be
found at

http://cl-informatik.uibk.ac.at/software/crest/

Currently, crest supports (non-)confluence [2, 4, 7] and limited (non-)termination analysis [2, 1].
The confluence methods mostly rely on closure properties of (parallel) critical pairs. In addition,
we support two recent transformation techniques: splitting constrained critical pairs (CCPs)
and merging constrained rewrite rules [5]. Furthermore, a constrained variant of the redundant
rules technique [3] is implemented [6].

Our tool crest participates in the LCTRS category of CoCo 2025.
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Natto: a small infeasibility prover based on term orders

Teppei Saito

JAIST, Japan

Natto is a prototype tool for infeasibility analysis, primarily developed to assess the impact
of formalizing order-based infeasibility methods [1] in the context of certification. It implements
a subset of the infeasibility techniques used in the Nagoya Termination Tool [2, 3], specifically
polynomial interpretations over the positive and negative integers, as well as the weighted path
order. The generated proofs are verifiable by CeTA.
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AProVE (Automated Program Verification Environment) is a tool for fully automatic pro-
gram verification. Its primary focus is on proving termination, analyzing (worst-case) com-
plexity, and verifying safety or infeasibility of different programming languages including term
rewriting. For further details on AProVE’s general approach for these analyses, see [3].

Termination and confluence are two closely related properties. Local confluence allows us
to reduce the analysis of termination from arbitrary rewrite sequences to innermost rewrite
sequences, a task that has been shown to be substantially easier. Moreover, the dependency
graph heavily relies on proving infeasibility so that better computable approximations may
yield a more exact model of the actual dependency graph. On the other hand, confluence is a
decidable property if termination is guaranteed. Therefore, AProVE has already implemented
some techniques for confluence, and we want to present the power of the currently implemented
methods and, in the future, to improve confluence and reachability analysis within AProVE.

AProVE relies on three main techniques:

• Termination-based Confluence Analysis: We use our termination analysis to check
whether the well-known decision procedure for confluence is applicable.

• Modularity : We use basic results on modularity of confluence from the last century. To
be precise, we implemented different modularity results mentioned in [1] and [4].

• Joinability and Reachability Analysis: To disprove joinability of critical pairs, AProVE
uses techniques originally designed for proving infeasibility within dependency graph ap-
proximations, e.g., checking for unifiability between the target term and an approximation
of the top part of the source term that remains the same during rewrite steps.

In the future, we want to investigate the problem of confluence within the probabilistic
setting, a question raised in recent years and investigated in, e.g., [2], but which has received
relatively little attention. Due to the complex interplay of probabilities and non-deterministic
choices, we believe that this is an interesting direction for the confluence community.
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Hakusan 0.12: A Confluence Tool
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Hakusan (https://www.jaist.ac.jp/project/saigawa/) is a confluence tool for left-linear
term rewrite systems (TRSs). It analyzes confluence by successive application of rule removal
criteria [5, 6, 10] based on rule labeling [9, 13], critical pair systems [4], and the generalization of
Knuth and Bendix’ criterion by Klein and Hirokawa [7]. Hakusan can produce proof certificates
verifiable by CeTA [11], see [3].

Compared to the last version of Hakusan [6], non-confluence analysis has been improved by
adopting the approach used in CSI [8]. Given a TRS R and convertible terms t1 ←→∗

R t2, this
approach constructs two tree automata A1 and A2 such that L(Ai) is closed under R-rewriting
and ti ∈ L(Ai) for each i. If L(A1) ∩ L(A2) = ∅ then t1 and t2 are not joinable. Thus,
non-confluence of R is concluded. Construction of Ai is heuristically done by tree automata
completion [2] and closedness of its language under rewriting is tested by checking state com-
patibility and state coherence [1]. Tree automata completion uses the following criterion for
testing closedness under rewriting.

Proposition 1. Let A = (F , Q,Qf ,∆) be a deterministic tree automaton and R a TRS.
The language L(A) is closed under R-rewriting if A is compatible with all rules in R. Here
compatibility with ℓ→ r means that rσ →∗

∆ q whenever σ : Var(ℓ)→ Q and ℓσ →∗
∆ q ∈ Q.

Example 1. Consider the TRS R over the signature F = {h, f, g, a, b}:
1: h(g, a, a)→ h(f, a, a) 2 : h(x, b, y)→ h(x, y, y) 3 : f → g 4: a→ b

By the aforementioned approach we can prove that the convertible terms t1 = h(g, b, b) and
t2 = h(g, a, a) are not joinable. Here we illustrate how compatibility for Proposition 1 is tested.
Consider the deterministic tree automaton A1 = (F , Q, {2},∆) with Q = {0, 1, 2} and ∆ =
{g → 0, b → 1, h(0, 1, 1) → 2}. This automaton satisfies L(A1) = {t1} and the compatibility
with all rules in R. For example, the compatibility with rule 2 is verified by checking that all
triples (q1, q2, q3) ∈ Q3 satisfy the implication h(q1, b, q2)→∗

∆ q3 =⇒ h(q1, q2, q2)→∗
∆ q3.

Compatibility check is a major bottleneck in tree automata completion. To ease the check,
our tool exploits persistency of reachability.

Proposition 2. Let R be a many-sorted TRS and Θ a sort elimination-operator [12]. If s is
well-sorted then s→∗

R t and Θ(s)→∗
Θ(R) Θ(t) are equivalent.

Thus, we can analyze reachability after performing type introduction. Type disciple enables
us to discard ill-sorted state substitutions for compatibility check.

Example 2 (continued from Example 1). The TRS R and the terms t1 and t2 can be seen as
a TRS and terms over the many-sorted signature:

h : A×B ×B → C f : A g : A a : B b : B

The sorted signature naturally assigns sorts to the states of A1 as follows:

0 : A 1 : B 2 : C

As h(q1, b, q2) →∗
∆ q3 induces q1 : A, q2 : B, and q3 : C, the compatibility of A with rule 2

follows by testing the previous implication only for (q1, q2, q3) ∈ {0} × {1} × {2}.
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1 Overview

CONFident is a tool which is able to prove confluence of TRSs, CS-TRSs, CTRSs and CS-
CTRSs. The tool is available here:

http://zenon.dsic.upv.es/confident/.

It is written in Haskell implementing the Confluence Framework. We implement the processors
using the logical approach presented in [1, 3, 6] and mechanizing them by external tools like
MU-TERM [3], infChecker [1, 5], AGES [2], Prover9 and Mace4 [8] and Barcelogic1.

In 2025, CONFident was enhanced with the new techniques implemented in infChecker,
improved with some relations needed in [7] and now supports the ARI format natively.
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1 Overview

infChecker is a tool for checking (in)feasibility of sequences of rewrite and relations with respect
to first-order theories, called goals [5]. infChecker participates in the INF category at the
Confluence Competition but it is also used as as a external tool in CONFident, which participates
in several categories in the Competition.

The tool is available here:

http://zenon.dsic.upv.es/infChecker/.

Some processors are mechanized using external tools like AGES [2], Prover9 and Mace4 [6].
Latest description of the tool can be found in [1, 3].

In 2025, we extended the tool (and its input format) to support Generalized Term Rewriting
Systems (GTRSs) [4], which are CTRS extended with a replacement map µ and by allowing
more general conditions in rules, atoms defined by a set of Horn clauses [3]. Furthermore, we
now support problems in ARI format, which in previous years were handled by external tools.
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University of Innsbruck, Austria

The tool CeTA [6] is a certifier for, among other properties, (non-)confluence of term rewrite
systems with and without conditions. Its soundness is proven as part of the formal proof library
IsaFoR, the Isabelle Formalization of Rewriting. Below, we present the relevant changes from last
year’s version (3.1) to this year’s version (3.6). For a complete reference of supported techniques
we refer to the certification problem format (CPF) and the IsaFoR/CeTA website:

http://cl-informatik.uibk.ac.at/isafor/

CeTA 3.6 has the new feature that it is capable of checking feasibility proofs, so that now in
the INF category of CoCo both YES-answers and NO-answers can be certified. Essentially, a
certificate of a feasibility proof consists of the substitution that proves feasibility in combination
with details on the rewrite sequence, consisting of conditional rewrite steps.

In CeTA 3.6, also a new class of term orderings have been added. These orderings can be used
in non-joinability proofs as discrimination pairs, or in infeasibility proofs as co-rewrite pairs.
The new class of term orderings are Hofbauer and Waldmann’s core matrix interpretations [2].
We generalized these orderings from the SRS version to a full TRS version [4]. Note that core
matrix interpretations have slightly different requirements than the matrix interpretations of
Endrullis et al. [1].

Regarding non-commutation of two TRSs R and S, CeTA 3.6 has added a swap technique, so
that the role of R and S can be swapped. The reason is that some non-commutation techniques
are not symmetric. Previously, swapping was only supported within commutation proofs.

A further significant addition has been added to IsaFoR, namely in the form of Okui’s
confluence criterion [3, 5]. However, this part is not yet available in CeTA: it remains to develop
and verify an algorithm to compute all simultaneous critical pairs of TRSs.
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ACP (Automated Confluence Prover) is a tool for proving confluence and some related prop-
erties of (conditional) term rewriting systems. Below we provide a brief overview of ACP.

A primary functionality of ACP is proving confluence (CR) of term rewriting systems
(TRSs). ACP integrates multiple direct criteria for guaranteeing confluence of TRSs. It also
incorporates divide–and–conquer criteria by which confluence or non-confluence of TRSs can
be inferred from those of their components. Several methods for disproving confluence are also
employed. For some criteria, it supports generation of proofs in CPF format that can be cer-
tified by certifiers. The internal structure of the prover is kept simple and is mostly inherited
from the version 0.11a, which has been described in [3]. It also deal with confluence of oriented
conditional term rewriting systems. Besides confluence, ACP supports proving the UNC prop-
erty (unique normal form property w.r.t. conversion), the UNR property (unique normal form
property w.r.t. reduction), and the commutation property of term rewriting systems [2, 4, 5, 6].
Some commutativity (dis)proving proofs have capability of producing certifiable proofs in CPF
format.

ACP is written in Standard ML of New Jersey (SML/NJ) and the source code is also available
from [1]. It uses a SAT prover such asMiniSAT and an SMT prover YICES as external provers. It
internally contains an automated (relative) termination prover for TRSs but external (relative)
termination provers can be substituted optionally. Users can specify criteria to be used so that
each criterion or any combination of them can be tested. Several levels of verbosity are available
for the output so that users can investigate details of the employed approximations for each
criterion or can get only the final result of the prover’s attempt.
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CO3, a converter for proving confluence of conditional TRSs,1 tries to prove confluence
of conditional term rewrite systems (CTRSs, for short) by using a transformational approach
(cf. [8]). The tool first transforms a given weakly-left-linear (WLL, for short) 3-DCTRS into
an unconditional term rewrite system (TRS, for short) by using Uconf [3], a variant of the
unraveling U [10], and then verifies confluence of the transformed TRS by using the following
theorem: A 3-DCTRS R is confluent if R is WLL and Uconf (R) is confluent [2, 3]. The tool
is very efficient because of very simple and lightweight functions to verify properties such as
confluence and termination of TRSs.

Since version 2.0, a narrowing-tree-based approach [9, 4] to prove infeasibility of a condition
w.r.t. a CTRS has been implemented [5]. The approach is applicable to syntactically deter-
ministic CTRSs that are operationally terminating and ultra-right-linear w.r.t. the optimized
unraveling. To prove infeasibility of a condition c, the tool first proves confluence, and then
linearizes c if failed to prove confluence; then, the tool computes and simplifies a narrowing
tree for c, and examines the emptiness of the narrowing tree. Since version 2.2, CO3 accepts
both join and semi-equational CTRSs, and transforms them into equivalent DCTRSs to prove
confluence or infeasibility [6].

The difference from the previous version [7] is a slight improvement of the subterm criterion.
CO3 uses very lightweight criteria for proving termination, while using the DP framework [1].
The subterm criterion implemented in the previous version considers the first argument of
marked symbols, while arbitrary arguments can be taken. This version uses the second argument
in addition to the first one: The subterm criterion processor tries to prove finiteness of a given
DP problem by means of the first argument, and if failed, then it tries it by means of the
second argument. This slight improvements succeeds in proving termination of (C)TRSs and
thus confluence of, e.g., 1009.ari.
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CRaris, a CR checker for LCTRSs in ARI style,1 is a tool to prove confluence of logically
constrained term rewrite systems (LCTRSs, for short) [5] written in ARI format [1].2 The tool
is based on Crisys2, constrained rewriting induction system (version 2),3 and receives LCTRSs
written in ARI format only to prove confluence, while Crisys2 has many functions to e.g., solve
all-path reachability problems [3]. To prove confluence of LCTRSs, the tool uses the following
criteria:

• weak orthogonality [5], and

• termination and joinability of critical pairs [8].

To prove termination, the tool uses the DP framework for LCTRSs [4] without any interpreta-
tion method, together with a criterion for LCTRSs with bitvector arithmetics [6].

The critical pairs of two constrained rewrite rules ρ1 : ℓ1 → r1 [φ1] and ρ2 : ℓ2 → r2 [φ2]
with distinct variables (i.e., Var(ℓ1, r1, φ1) ∩ Var(ℓ2, r2, φ2) = ∅) are all tuples ⟨s, t, ϕ⟩ such
that a non-variable subterm ℓ1|p of ℓ1 at a position p is unifiable with ℓ2, “p ̸= ε, ρ1 ̸= ρ2
up to variable renaming, or Var(r1) ⊆ Var(ℓ1)”, the most general unifier γ of ℓ1|p and ℓ2
respects variables of both ρ1 and ρ2, i.e., γ(x) is either a value or a variable for all variables x
in Var(φ1, φ2)∪ (Var(r1, r2)\Var(ℓ1, ℓ2)), (φ1∧φ2)γ is satisfiable, s = r1γ, t = (ℓ1[r2]p)γ, and
ϕ = (φ1 ∧φ2)γ. The set of critical pairs of an LCTRS R is denoted by CP(R), which includes
all critical pairs of two rules in R∪Rcalc . A critical pair ⟨s, t, ϕ⟩ is called trivial if s [ϕ] ∼ t [ϕ].
An LCTRS R is called weakly orthogonal if R is left-linear and all critical pairs of R are trivial.

Theorem 1 ([5]). A weakly orthogonal LCTRS is confluent.

A critical pair ⟨s, t, ϕ⟩ is called joinable if (⟨s, t⟩ [ϕ])→∗
R (⟨s′, t′⟩ [ϕ′]) and s′ [ϕ′] ∼ t′ [ϕ′].

Theorem 2 ([8]). A terminating LCTRS is confluent if all its critical pairs are joinable.

The previous version [7] uses syntactic equivalence of terms as a sufficient condition for a
critical pair ⟨s, t, ϕ⟩ being trivial.

Proposition 3 ([7]). A critical pair ⟨s, s, ϕ⟩ is trivial and thus joinable.

This version uses the idea of EQ-Deletion of constrained rewriting induction [2].

Proposition 4. A critical pair ⟨s, t, ϕ⟩ is trivial if there exist positions p1, . . . , pn of s such
that p1, . . . , pn are positions of t, t = s[t1, . . . , tn]p1,...,pn , s|p1 , t1 . . . , s|pn , tn are theory terms,
Var(s|p1 , . . . , s|pn , t1, . . . , tn) ⊆ Var(ϕ), and ϕ ∧ ¬ (

∧n
i=1(s|pi = ti)) is unsatisfiable.

In addition, this version uses a very simple variant of the disproof criterion—an LCTRS is
not confluent if there exists a constrained critical pair that rewrites to a non-trivial constrained
equation in normal form—in [9, Lemma 1].

Proposition 5. An LCTRS R is not confluent if there exists a critical pair ⟨s, t, ϕ⟩ of R such
that s, t are variables in Var(ϕ) and ϕ ∧ ¬ (∧n

i=1(s|pi = ti)) is satisfiable.
1http://www.trs.css.i.nagoya-u.ac.jp/craris/
2https://project-coco.uibk.ac.at/ARI/lctrs.php
3https://www.trs.cm.is.nagoya-u.ac.jp/crisys/
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The first-order theory of rewriting is a decidable theory for finite left-linear right-ground
rewrite systems. The decision procedure goes back to Dauchet and Tison [2]. FORT-h is a
reimplementation of the tool FORT [5], but is based on a new variant of the decision procedure,
described in [3], for the larger class of linear variable-separated rewrite systems. This variant
supports a more expressive theory and is based on anchored ground tree transducers. More
importantly, it can produce certificates for the YES/NO answers. These certificates can then
be verified by FORTify, an independent Haskell program that is code-generated from the
formalization of the decision procedure in the proof assistant Isabelle/HOL.

A command-line version of FORT-h can be downloaded from

http://fortissimo.uibk.ac.at/fort(ify)/

FORT-h participates in the TRS category of CoCo 2025 both as a standalone tool and in
combination with FORTify [4] to produce certified YES/NO answers. In 2024 FORT-h tied
ACP [1] for the most YES answers in the COM category. Moreover, it won the RELIABILITY1

category, by producing the most certifiable answers across all categories.

FORT-h 2.1 accepts input problems in ARI2 format.
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CSI is an automatic tool for (dis)proving confluence and related properties of first-order term
rewrite systems (TRSs). It has been in development since 2010 and has had many different
contributors over the years. Its name is derived from the Confluence of the rivers Sill and Inn in
Innsbruck. The tool is available from

http://cl-informatik.uibk.ac.at/software/csi

under a LGPLv3 license. A detailed description of CSI can be found in [4]. Some of the
implemented techniques are described in [1,3,5]. CSI can also produce certificates for confluence
results, which are checked by CeTA [2].

CSI participates in the TRS category of CoCo 2025 both as a standalone tool and in
combination with CeTA providing certified confluence and non-confluence answers. In 2024 CSI
won not only the TRS category, but also the NFP, SRS, UNC and UNR categories. Together
with CeTA it came in second in the RELIABILITY category where tools are ranked based on the
number of certifiable answers.

CSI uses the conversion tool1 to transform ARI problems into COPS problems.
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The first-order theory of rewriting is a decidable theory for linear variable-separated rewrite
systems. The decision procedure goes back to Dauchet and Tison [1]. In this theory confluence-
related properties on ground terms are easily expressible. An extension of the theory to multiple
rewrite systems, as well as the decision procedure, has been formalized in Isabelle/HOL [2–4].
The code generation facilities of Isabelle then give rise to the certifier FORTify which checks
certificate constructed by FORT-h [6]. FORTify takes as input an answer (YES/NO), a formula,
a list of TRSs, and a certificate proving that the formula holds (does not hold) for the given
TRSs. It then checks the integrity and validity of the certificate. A command-line version of the
tool can be downloaded from

https://fortissimo.uibk.ac.at/fort(ify)/

We refer to [5] for a detailed description of FORTify.

This year FORTify participates, together with FORT-h, in the TRS category of CoCo 2025.
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SOL is a Haskell-based tool for showing confluence and strong normalisation of higher-
order computation. SOL is intended to be a generic higher-order computation analysis tool
that is applicable to the modern theories of higher-order programming languages. This aim is
demonstrated in [Ham19] and further developed in [HAK20].

Based on the foundation of second-order algebraic theories [FH10] and its computational
counter part [Ham19] and polymorphic extension [HAK20], we have implemented various results
on higher-order syntax and computation in SOL, including Knuth and Bendix’s critical pair
checking for confluence.

Recently, Muroya and Hamana have proposed a framework referred to as Term Evaluation
Systems (TERS), unifying operational semantics and refinement reasoning [MH24]. We have
also implemented contextual improvement verification by critical pair analysis [MH24] in SOL.
Since every context-sensitive rewriting system can be simulated by a nondeterministic term
evaluation system, in the present SOL 2025 version, we have implemented confluence checking
of context-sensitive rewriting on an experimental basis.

References

[MH24] Koko Muroya and M. Hamana. Term Evaluation Systems with Refinements: First-Order,
Second-Order, and Contextual Improvement, Proc. of 17th International Symposium on Func-
tional and Logic Programming (FLOPS 2024), Lecture Notes in Computer Science 14659, pp.
31-61, Springer, 2024.

[FH10] M. Fiore and C.-K. Hur. Second-order equational logic. In Proc. of CSL’10, LNCS 6247,
pages 320–335, 2010.

[Ham19] M. Hamana. How to prove decidability of equational theories with second-order computation
analyser SOL. Journal of Functional Programming, Cambridge University Press, Vol. 29, e20,
2019.

[HAK20] Makoto Hamana, Tatsuya Abe, and Kentaro Kikuchi.
Polymorphic Computation Systems: Theory and Practice of Confluence with Call-by-value,
Science of Computer Programming, Elsevier, Volume 187, 102322, 15 February 2020.

72


	Foreword
	Organization
	Abstracts of Invited Talks
	Confluence of Conditional Rewriting Modulo Salvador Lucas
	Conway’s Game of Life and other orthogonal rewrite systems Vincent van Oostrom

	Abstract of IWC/WST Joint Invited Talk
	Termination and Confluence: Remembering Hans Zantema Aart Middeldorp

	Workshop Contributions
	Improving Confluence Analysis for LCTRSs Jonas Schöpf and Aart Middeldorp
	Towards Confluence of Deterministic Higher-Order Pattern Rewrite Systems by Critical Pairs Johannes Niederhauser and Aart Middeldorp
	Term Evaluation Systems with Refinements for Contextual Improvement by Critical Pair Analysis Makoto Hamana and Koko Muroya
	Confluence of 001- and 101-infinitary -calculi by linear approximation Rémy Cerda and Lionel Vaux Auclair
	Deciding pattern completeness in non-deterministic polynomial time René Thiemann and Akihisa Yamada
	Proving and disproving feasibility with infChecker Raúl Gutiérrez and Salvador Lucas
	Redeeming Newman; orthogonality in rewriting – Past, present and future in a 1-algebraic setting Vincent van Oostrom

	Confluence Competition
	Confluence Competition 2025 Raúl Gutiérrez, Aart Middeldorp, Naoki Nishida, Teppei Saito, and René Thiemann
	CSI-Grackle Liao Zhang and Qinxiang Cao
	crest 1.0 Jonas Schöpf and Aart Middeldorp
	Natto: a small infeasibility prover based on term orders Teppei Saito
	AProVE25: Confluence Analysis in a Termination Tool Jan-Christoph Kassing and Tobias Sokolowski
	Hakusan 0.12: A Confluence Tool Fuyuki Kawano, Hiroka Hondo, Nao Hirokawa, and Kiraku Shintani
	CONFident at the 2025 Confluence Competition Raúul Gutiérrez and Salvador Lucas
	infChecker at the 2025 Confluence Competition Raúul Gutiérrez and Salvador Lucas
	CeTA 3.6 Christina Kirk and René Thiemann
	ACP: System Description for CoCo 2025 Takahito Aoto
	CO3 (Version 2.6) Naoki Nishida and Misaki Kojima
	CRaris (Version 1.1) Naoki Nishida and Misaki Kojima
	FORT-h 2.1 Fabian Mitterwallner and Aart Middeldorp
	CSI 1.2.7 Fabian Mitterwallner and Aart Middeldorp
	FORTify 2.1 Fabian Mitterwallner and Aart Middeldorp
	The System SOL Makoto Hamana and Shotaro Karasaki


