
supported by project I 5943-N

Improving Confluence Analysis for LCTRSs

Jonas Schöpf and Aart Middeldorp

University of Innsbruck



Outline

1. Logically Constrained Rewrite Systems

2. Confluence Results

3. Redundant Rules

4. Reduction Method

5. Conclusion

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 2/27



compute
n∑

i=1

i for natural number n

Example

▶ term rewrite system (TRS)

sum(0) → 0 add(0, y) → y

sum(s(x)) → add(s(x), sum(x)) add(s(x), y) → s(add(x, y))

▶ rewriting

sum(s(s(s(0))) → add(s(s(s(0))), sum(s(s(0)))) → s(add(s(s(0)), sum(s(s(0)))))

→ · · · → s(s(s(s(s(s(0))))))

▶ logically constrained term rewrite system (LCTRS)

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ rewriting

sum(3) → 3 + sum(3− 1)

→ 3 + sum(2) → 3 + (2 + sum(2− 1)) → · · · → 6

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 3/27



compute
n∑

i=1

i for natural number n

Example

▶ term rewrite system (TRS)

sum(0) → 0 add(0, y) → y

sum(s(x)) → add(s(x), sum(x)) add(s(x), y) → s(add(x, y))

▶ rewriting

sum(s(s(s(0))) → add(s(s(s(0))), sum(s(s(0)))) → s(add(s(s(0)), sum(s(s(0)))))

→ · · · → s(s(s(s(s(s(0))))))

▶ logically constrained term rewrite system (LCTRS)

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ rewriting

sum(3) → 3 + sum(3− 1)

→ 3 + sum(2) → 3 + (2 + sum(2− 1)) → · · · → 6

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 3/27



compute
n∑

i=1

i for natural number n

Example

▶ term rewrite system (TRS)

sum(0) → 0 add(0, y) → y

sum(s(x)) → add(s(x), sum(x)) add(s(x), y) → s(add(x, y))

▶ rewriting

sum(s(s(s(0))) → add(s(s(s(0))), sum(s(s(0)))) → s(add(s(s(0)), sum(s(s(0)))))

→ · · · → s(s(s(s(s(s(0))))))

▶ logically constrained term rewrite system (LCTRS)

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ rewriting

sum(3) → 3 + sum(3− 1)

→ 3 + sum(2) → 3 + (2 + sum(2− 1)) → · · · → 6

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 3/27



compute
n∑

i=1

i for natural number n

Example

▶ term rewrite system (TRS)

sum(0) → 0 add(0, y) → y

sum(s(x)) → add(s(x), sum(x)) add(s(x), y) → s(add(x, y))

▶ rewriting

sum(s(s(s(0))) → add(s(s(s(0))), sum(s(s(0)))) → s(add(s(s(0)), sum(s(s(0)))))

→ · · · → s(s(s(s(s(s(0))))))

▶ logically constrained term rewrite system (LCTRS)

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ rewriting

sum(3) → 3 + sum(3− 1)

→ 3 + sum(2) → 3 + (2 + sum(2− 1)) → · · · → 6

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 3/27



compute
n∑

i=1

i for natural number n

Example

▶ term rewrite system (TRS)

sum(0) → 0 add(0, y) → y

sum(s(x)) → add(s(x), sum(x)) add(s(x), y) → s(add(x, y))

▶ rewriting

sum(s(s(s(0))) → add(s(s(s(0))), sum(s(s(0)))) → s(add(s(s(0)), sum(s(s(0)))))

→ · · · → s(s(s(s(s(s(0))))))

▶ logically constrained term rewrite system (LCTRS)

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ rewriting

sum(3) → 3 + sum(3− 1)

→ 3 + sum(2) → 3 + (2 + sum(2− 1)) → · · · → 6

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 3/27



compute
n∑

i=1

i for natural number n

Example

▶ term rewrite system (TRS)

sum(0) → 0 add(0, y) → y

sum(s(x)) → add(s(x), sum(x)) add(s(x), y) → s(add(x, y))

▶ rewriting

sum(s(s(s(0))) → add(s(s(s(0))), sum(s(s(0)))) → s(add(s(s(0)), sum(s(s(0)))))

→ · · · → s(s(s(s(s(s(0))))))

▶ logically constrained term rewrite system (LCTRS)

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ rewriting

sum(3) → 3 + sum(3− 1) → 3 + sum(2)

→ 3 + (2 + sum(2− 1)) → · · · → 6

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 3/27



compute
n∑

i=1

i for natural number n

Example

▶ term rewrite system (TRS)

sum(0) → 0 add(0, y) → y

sum(s(x)) → add(s(x), sum(x)) add(s(x), y) → s(add(x, y))

▶ rewriting

sum(s(s(s(0))) → add(s(s(s(0))), sum(s(s(0)))) → s(add(s(s(0)), sum(s(s(0)))))

→ · · · → s(s(s(s(s(s(0))))))

▶ logically constrained term rewrite system (LCTRS)

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ rewriting

sum(3) → 3 + sum(3− 1) → 3 + sum(2) → 3 + (2 + sum(2− 1))

→ · · · → 6

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 3/27



compute
n∑

i=1

i for natural number n

Example

▶ term rewrite system (TRS)

sum(0) → 0 add(0, y) → y

sum(s(x)) → add(s(x), sum(x)) add(s(x), y) → s(add(x, y))

▶ rewriting

sum(s(s(s(0))) → add(s(s(s(0))), sum(s(s(0)))) → s(add(s(s(0)), sum(s(s(0)))))

→ · · · → s(s(s(s(s(s(0))))))

▶ logically constrained term rewrite system (LCTRS)

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ rewriting

sum(3) → 3 + sum(3− 1) → 3 + sum(2) → 3 + (2 + sum(2− 1)) → · · · → 6

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 3/27



Definitions

▶ many–sorted signature F = Fte ⊎ Fth and non–empty set of constant symbols Val ⊆ Fth

▶ logical term is element of T (Fth,V)
▶ constraint is logical term of sort Bool

▶ logical ground terms are mapped to values: [[f(t1, . . . , tn)]] = fJ ([[t1 ]], . . . , [[tn ]])

▶ constrained rewrite rule is triple ℓ → r [φ ] with constraint φ and terms ℓ, r ∈ T (F ,V) of

same sort such that root(ℓ) ∈ Fte \ Fth

▶ LCTRS R is set of constrained rewrite rules

▶ calculation rule is f(x1, . . . , xn) → y [ y = f(x1, . . . , xn) ] with f ∈ Fth \ Val and fresh y

▶ Rca is set of calculation rules and Rrc = R ∪ Rca

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 4/27



Definitions

▶ many–sorted signature F = Fte ⊎ Fth and non–empty set of constant symbols Val ⊆ Fth

▶ logical term is element of T (Fth,V)

▶ constraint is logical term of sort Bool

▶ logical ground terms are mapped to values: [[f(t1, . . . , tn)]] = fJ ([[t1 ]], . . . , [[tn ]])

▶ constrained rewrite rule is triple ℓ → r [φ ] with constraint φ and terms ℓ, r ∈ T (F ,V) of

same sort such that root(ℓ) ∈ Fte \ Fth

▶ LCTRS R is set of constrained rewrite rules

▶ calculation rule is f(x1, . . . , xn) → y [ y = f(x1, . . . , xn) ] with f ∈ Fth \ Val and fresh y

▶ Rca is set of calculation rules and Rrc = R ∪ Rca

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 4/27



Definitions

▶ many–sorted signature F = Fte ⊎ Fth and non–empty set of constant symbols Val ⊆ Fth

▶ logical term is element of T (Fth,V)
▶ constraint is logical term of sort Bool

▶ logical ground terms are mapped to values: [[f(t1, . . . , tn)]] = fJ ([[t1 ]], . . . , [[tn ]])

▶ constrained rewrite rule is triple ℓ → r [φ ] with constraint φ and terms ℓ, r ∈ T (F ,V) of

same sort such that root(ℓ) ∈ Fte \ Fth

▶ LCTRS R is set of constrained rewrite rules

▶ calculation rule is f(x1, . . . , xn) → y [ y = f(x1, . . . , xn) ] with f ∈ Fth \ Val and fresh y

▶ Rca is set of calculation rules and Rrc = R ∪ Rca

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 4/27



Definitions

▶ many–sorted signature F = Fte ⊎ Fth and non–empty set of constant symbols Val ⊆ Fth

▶ logical term is element of T (Fth,V)
▶ constraint is logical term of sort Bool

▶ logical ground terms are mapped to values: [[f(t1, . . . , tn)]] = fJ ([[t1 ]], . . . , [[tn ]])

▶ constrained rewrite rule is triple ℓ → r [φ ] with constraint φ and terms ℓ, r ∈ T (F ,V) of

same sort such that root(ℓ) ∈ Fte \ Fth

▶ LCTRS R is set of constrained rewrite rules

▶ calculation rule is f(x1, . . . , xn) → y [ y = f(x1, . . . , xn) ] with f ∈ Fth \ Val and fresh y

▶ Rca is set of calculation rules and Rrc = R ∪ Rca

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 4/27



Definitions

▶ many–sorted signature F = Fte ⊎ Fth and non–empty set of constant symbols Val ⊆ Fth

▶ logical term is element of T (Fth,V)
▶ constraint is logical term of sort Bool

▶ logical ground terms are mapped to values: [[f(t1, . . . , tn)]] = fJ ([[t1 ]], . . . , [[tn ]])

▶ constrained rewrite rule is triple ℓ → r [φ ] with constraint φ and terms ℓ, r ∈ T (F ,V) of

same sort such that root(ℓ) ∈ Fte \ Fth

▶ LCTRS R is set of constrained rewrite rules

▶ calculation rule is f(x1, . . . , xn) → y [ y = f(x1, . . . , xn) ] with f ∈ Fth \ Val and fresh y

▶ Rca is set of calculation rules and Rrc = R ∪ Rca

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 4/27



Definitions

▶ many–sorted signature F = Fte ⊎ Fth and non–empty set of constant symbols Val ⊆ Fth

▶ logical term is element of T (Fth,V)
▶ constraint is logical term of sort Bool

▶ logical ground terms are mapped to values: [[f(t1, . . . , tn)]] = fJ ([[t1 ]], . . . , [[tn ]])

▶ constrained rewrite rule is triple ℓ → r [φ ] with constraint φ and terms ℓ, r ∈ T (F ,V) of

same sort such that root(ℓ) ∈ Fte \ Fth

▶ LCTRS R is set of constrained rewrite rules

▶ calculation rule is f(x1, . . . , xn) → y [ y = f(x1, . . . , xn) ] with f ∈ Fth \ Val and fresh y

▶ Rca is set of calculation rules and Rrc = R ∪ Rca

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 4/27



Definitions

▶ many–sorted signature F = Fte ⊎ Fth and non–empty set of constant symbols Val ⊆ Fth

▶ logical term is element of T (Fth,V)
▶ constraint is logical term of sort Bool

▶ logical ground terms are mapped to values: [[f(t1, . . . , tn)]] = fJ ([[t1 ]], . . . , [[tn ]])

▶ constrained rewrite rule is triple ℓ → r [φ ] with constraint φ and terms ℓ, r ∈ T (F ,V) of

same sort such that root(ℓ) ∈ Fte \ Fth

▶ LCTRS R is set of constrained rewrite rules

▶ calculation rule is f(x1, . . . , xn) → y [ y = f(x1, . . . , xn) ] with f ∈ Fth \ Val and fresh y

▶ Rca is set of calculation rules and Rrc = R ∪ Rca

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 4/27



Definitions

▶ many–sorted signature F = Fte ⊎ Fth and non–empty set of constant symbols Val ⊆ Fth

▶ logical term is element of T (Fth,V)
▶ constraint is logical term of sort Bool

▶ logical ground terms are mapped to values: [[f(t1, . . . , tn)]] = fJ ([[t1 ]], . . . , [[tn ]])

▶ constrained rewrite rule is triple ℓ → r [φ ] with constraint φ and terms ℓ, r ∈ T (F ,V) of

same sort such that root(ℓ) ∈ Fte \ Fth

▶ LCTRS R is set of constrained rewrite rules

▶ calculation rule is f(x1, . . . , xn) → y [ y = f(x1, . . . , xn) ] with f ∈ Fth \ Val and fresh y

▶ Rca is set of calculation rules and Rrc = R ∪ Rca

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 4/27



Example

▶ LCTRS

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ two sorts Int and Bool with Val Int = Z and ValBool = {⊥, ⊤}

▶ signature Fth +, − : Int× Int→ Int ⩽, > : Int× Int→ Bool . . . , −1, 0, 1, · · · : Int

▶ signature Fte sum : Int→ Int

Definition

substitution σ respects constrained rewrite rule ρ : ℓ → r [φ ] if

1 Dom(σ) ⊆ Var(ρ)

2 σ(x) ∈ Val for all x ∈ LVar(ρ) = Var(φ) ∪ (Var(r ) \ Var(ℓ)) (logical variables)

3 [[φσ ]] = ⊤

notation: σ ⊨ ρ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 5/27



Example

▶ LCTRS

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ two sorts Int and Bool with Val Int = Z and ValBool = {⊥, ⊤}
▶ signature Fth +, − : Int× Int→ Int ⩽, > : Int× Int→ Bool . . . , −1, 0, 1, · · · : Int

▶ signature Fte sum : Int→ Int

Definition

substitution σ respects constrained rewrite rule ρ : ℓ → r [φ ] if

1 Dom(σ) ⊆ Var(ρ)

2 σ(x) ∈ Val for all x ∈ LVar(ρ) = Var(φ) ∪ (Var(r ) \ Var(ℓ)) (logical variables)

3 [[φσ ]] = ⊤

notation: σ ⊨ ρ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 5/27



Example

▶ LCTRS

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ two sorts Int and Bool with Val Int = Z and ValBool = {⊥, ⊤}
▶ signature Fth +, − : Int× Int→ Int ⩽, > : Int× Int→ Bool . . . , −1, 0, 1, · · · : Int

▶ signature Fte sum : Int→ Int

Definition

substitution σ respects constrained rewrite rule ρ : ℓ → r [φ ] if

1 Dom(σ) ⊆ Var(ρ)

2 σ(x) ∈ Val for all x ∈ LVar(ρ) = Var(φ) ∪ (Var(r ) \ Var(ℓ)) (logical variables)

3 [[φσ ]] = ⊤

notation: σ ⊨ ρ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 5/27



Example

▶ LCTRS

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ two sorts Int and Bool with Val Int = Z and ValBool = {⊥, ⊤}
▶ signature Fth +, − : Int× Int→ Int ⩽, > : Int× Int→ Bool . . . , −1, 0, 1, · · · : Int

▶ signature Fte sum : Int→ Int

Definition

substitution σ respects constrained rewrite rule ρ : ℓ → r [φ ] if

1 Dom(σ) ⊆ Var(ρ)

2 σ(x) ∈ Val for all x ∈ LVar(ρ) = Var(φ) ∪ (Var(r ) \ Var(ℓ)) (logical variables)

3 [[φσ ]] = ⊤

notation: σ ⊨ ρ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 5/27



Example

▶ LCTRS

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ two sorts Int and Bool with Val Int = Z and ValBool = {⊥, ⊤}
▶ signature Fth +, − : Int× Int→ Int ⩽, > : Int× Int→ Bool . . . , −1, 0, 1, · · · : Int

▶ signature Fte sum : Int→ Int

Definition

substitution σ respects constrained rewrite rule ρ : ℓ → r [φ ] if

1 Dom(σ) ⊆ Var(ρ)

2 σ(x) ∈ Val for all x ∈ LVar(ρ) = Var(φ) ∪ (Var(r ) \ Var(ℓ)) (logical variables)

3 [[φσ ]] = ⊤

notation: σ ⊨ ρ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 5/27



Definition

s →R t if there exist

1 position p in s

2 rewrite rule ℓ → r [φ ] in Rrc

3 substitution σ

such that s|p = ℓσ, t = s[rσ ]p and σ ⊨ ℓ → r [φ ]

Example

▶ LCTRS R = {sum(x) → 0 [ x ⩽ 0 ], sum(x) → x+ sum(x− 1) [ x > 0 ]}
▶ rewrite step sum(3− 1) →R sum(2)

1 position 1

2 calculation rule x1 − x2 → y [ y = x1 − x2 ]

3 substitution σ = {x1 7→ 3, x2 7→ 1, y 7→ 2}

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 6/27



Definition

s →R t if there exist

1 position p in s

2 rewrite rule ℓ → r [φ ] in Rrc

3 substitution σ

such that s|p = ℓσ, t = s[rσ ]p and σ ⊨ ℓ → r [φ ]

Example

▶ LCTRS R = {sum(x) → 0 [ x ⩽ 0 ], sum(x) → x+ sum(x− 1) [ x > 0 ]}
▶ rewrite step sum(3− 1) →R sum(2)

1 position 1

2 calculation rule x1 − x2 → y [ y = x1 − x2 ]

3 substitution σ = {x1 7→ 3, x2 7→ 1, y 7→ 2}

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 6/27



Definition

s →R t if there exist

1 position p in s

2 rewrite rule ℓ → r [φ ] in Rrc

3 substitution σ

such that s|p = ℓσ, t = s[rσ ]p and σ ⊨ ℓ → r [φ ]

Example

▶ LCTRS R = {sum(x) → 0 [ x ⩽ 0 ], sum(x) → x+ sum(x− 1) [ x > 0 ]}
▶ rewrite step sum(3− 1) →R sum(2)

1 position 1

2 calculation rule x1 − x2 → y [ y = x1 − x2 ]

3 substitution σ = {x1 7→ 3, x2 7→ 1, y 7→ 2}

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 6/27



Definition

s →R t if there exist

1 position p in s

2 rewrite rule ℓ → r [φ ] in Rrc

3 substitution σ

such that s|p = ℓσ, t = s[rσ ]p and σ ⊨ ℓ → r [φ ]

Example

▶ LCTRS R = {sum(x) → 0 [ x ⩽ 0 ], sum(x) → x+ sum(x− 1) [ x > 0 ]}
▶ rewrite step sum(3− 1) →R sum(2)

1 position 1

2 calculation rule x1 − x2 → y [ y = x1 − x2 ]

3 substitution σ = {x1 7→ 3, x2 7→ 1, y 7→ 2}

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 6/27



Definitions

▶ overlap of LCTRS R is triple ⟨ρ1,p, ρ2⟩ such that

1 ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ] are variable–disjoint variants of rules in Rrc

2 p ∈ PosF (ℓ2 )

3 ℓ1 and ℓ2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1 ) ∪ LVar(ρ2 )

4 φ1σ ∧ φ2σ is satisfiable

5 if p = ϵ then ρ1 and ρ2 are not variants or Var(r1 ) ⊈ Var(ℓ1 )

▶ ℓ2σ [r1σ ]p ≈ r2σ [φ1σ ∧ φ2σ ∧ ψσ ] is induced constrained critical pair

▶ EVar(ℓ → r [φ ]) = Var(r ) \ (Var(ℓ) ∪ Var(φ)) is set of extra variables

▶ ψ = ECρ1 ∧ ECρ2 where ECρ with ρ : ℓ → r [φ ] abbreviates
∧
{x = x | x ∈ EVar(ρ)}

▶ substitution σ respects constraint φ (σ ⊨ φ) if σ(x) ∈ Val for x ∈ Var(φ) and [[φσ ]] = ⊤
▶ constrained equation s ≈ t [φ ] is trivial if sσ = tσ for every substitution σ with σ ⊨ φ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 7/27



Definitions

▶ overlap of LCTRS R is triple ⟨ρ1,p, ρ2⟩ such that

1 ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ] are variable–disjoint variants of rules in Rrc

2 p ∈ PosF (ℓ2 )

3 ℓ1 and ℓ2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1 ) ∪ LVar(ρ2 )

4 φ1σ ∧ φ2σ is satisfiable

5 if p = ϵ then ρ1 and ρ2 are not variants or Var(r1 ) ⊈ Var(ℓ1 )

▶ ℓ2σ [r1σ ]p ≈ r2σ [φ1σ ∧ φ2σ ∧ ψσ ] is induced constrained critical pair

▶ EVar(ℓ → r [φ ]) = Var(r ) \ (Var(ℓ) ∪ Var(φ)) is set of extra variables

▶ ψ = ECρ1 ∧ ECρ2 where ECρ with ρ : ℓ → r [φ ] abbreviates
∧
{x = x | x ∈ EVar(ρ)}

▶ substitution σ respects constraint φ (σ ⊨ φ) if σ(x) ∈ Val for x ∈ Var(φ) and [[φσ ]] = ⊤
▶ constrained equation s ≈ t [φ ] is trivial if sσ = tσ for every substitution σ with σ ⊨ φ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 7/27



Definitions

▶ overlap of LCTRS R is triple ⟨ρ1,p, ρ2⟩ such that

1 ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ] are variable–disjoint variants of rules in Rrc

2 p ∈ PosF (ℓ2 )

3 ℓ1 and ℓ2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1 ) ∪ LVar(ρ2 )

4 φ1σ ∧ φ2σ is satisfiable

5 if p = ϵ then ρ1 and ρ2 are not variants or Var(r1 ) ⊈ Var(ℓ1 )

▶ ℓ2σ [r1σ ]p ≈ r2σ [φ1σ ∧ φ2σ ∧ ψσ ] is induced constrained critical pair

▶ EVar(ℓ → r [φ ]) = Var(r ) \ (Var(ℓ) ∪ Var(φ)) is set of extra variables

▶ ψ = ECρ1 ∧ ECρ2 where ECρ with ρ : ℓ → r [φ ] abbreviates
∧
{x = x | x ∈ EVar(ρ)}

▶ substitution σ respects constraint φ (σ ⊨ φ) if σ(x) ∈ Val for x ∈ Var(φ) and [[φσ ]] = ⊤
▶ constrained equation s ≈ t [φ ] is trivial if sσ = tσ for every substitution σ with σ ⊨ φ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 7/27



Definitions

▶ overlap of LCTRS R is triple ⟨ρ1,p, ρ2⟩ such that

1 ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ] are variable–disjoint variants of rules in Rrc

2 p ∈ PosF (ℓ2 )

3 ℓ1 and ℓ2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1 ) ∪ LVar(ρ2 )

4 φ1σ ∧ φ2σ is satisfiable

5 if p = ϵ then ρ1 and ρ2 are not variants or Var(r1 ) ⊈ Var(ℓ1 )

▶ ℓ2σ [r1σ ]p ≈ r2σ [φ1σ ∧ φ2σ ∧ ψσ ] is induced constrained critical pair

▶ EVar(ℓ → r [φ ]) = Var(r ) \ (Var(ℓ) ∪ Var(φ)) is set of extra variables

▶ ψ = ECρ1 ∧ ECρ2 where ECρ with ρ : ℓ → r [φ ] abbreviates
∧
{x = x | x ∈ EVar(ρ)}

▶ substitution σ respects constraint φ (σ ⊨ φ) if σ(x) ∈ Val for x ∈ Var(φ) and [[φσ ]] = ⊤
▶ constrained equation s ≈ t [φ ] is trivial if sσ = tσ for every substitution σ with σ ⊨ φ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 7/27



Definitions

▶ overlap of LCTRS R is triple ⟨ρ1,p, ρ2⟩ such that

1 ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ] are variable–disjoint variants of rules in Rrc

2 p ∈ PosF (ℓ2 )

3 ℓ1 and ℓ2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1 ) ∪ LVar(ρ2 )

4 φ1σ ∧ φ2σ is satisfiable

5 if p = ϵ then ρ1 and ρ2 are not variants or Var(r1 ) ⊈ Var(ℓ1 )

▶ ℓ2σ [r1σ ]p ≈ r2σ [φ1σ ∧ φ2σ ∧ ψσ ] is induced constrained critical pair

▶ EVar(ℓ → r [φ ]) = Var(r ) \ (Var(ℓ) ∪ Var(φ)) is set of extra variables

▶ ψ = ECρ1 ∧ ECρ2 where ECρ with ρ : ℓ → r [φ ] abbreviates
∧
{x = x | x ∈ EVar(ρ)}

▶ substitution σ respects constraint φ (σ ⊨ φ) if σ(x) ∈ Val for x ∈ Var(φ) and [[φσ ]] = ⊤
▶ constrained equation s ≈ t [φ ] is trivial if sσ = tσ for every substitution σ with σ ⊨ φ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 7/27



Definitions

▶ overlap of LCTRS R is triple ⟨ρ1,p, ρ2⟩ such that

1 ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ] are variable–disjoint variants of rules in Rrc

2 p ∈ PosF (ℓ2 )

3 ℓ1 and ℓ2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1 ) ∪ LVar(ρ2 )

4 φ1σ ∧ φ2σ is satisfiable

5 if p = ϵ then ρ1 and ρ2 are not variants or Var(r1 ) ⊈ Var(ℓ1 )

▶ ℓ2σ [r1σ ]p ≈ r2σ [φ1σ ∧ φ2σ ∧ ψσ ] is induced constrained critical pair

▶ EVar(ℓ → r [φ ]) = Var(r ) \ (Var(ℓ) ∪ Var(φ)) is set of extra variables

▶ ψ = ECρ1 ∧ ECρ2 where ECρ with ρ : ℓ → r [φ ] abbreviates
∧
{x = x | x ∈ EVar(ρ)}

▶ substitution σ respects constraint φ (σ ⊨ φ) if σ(x) ∈ Val for x ∈ Var(φ) and [[φσ ]] = ⊤
▶ constrained equation s ≈ t [φ ] is trivial if sσ = tσ for every substitution σ with σ ⊨ φ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 7/27



Definitions

▶ overlap of LCTRS R is triple ⟨ρ1,p, ρ2⟩ such that

1 ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ] are variable–disjoint variants of rules in Rrc

2 p ∈ PosF (ℓ2 )

3 ℓ1 and ℓ2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1 ) ∪ LVar(ρ2 )

4 φ1σ ∧ φ2σ is satisfiable

5 if p = ϵ then ρ1 and ρ2 are not variants or Var(r1 ) ⊈ Var(ℓ1 )

▶ ℓ2σ [r1σ ]p ≈ r2σ [φ1σ ∧ φ2σ ∧ ψσ ] is induced constrained critical pair

▶ EVar(ℓ → r [φ ]) = Var(r ) \ (Var(ℓ) ∪ Var(φ)) is set of extra variables

▶ ψ = ECρ1 ∧ ECρ2 where ECρ with ρ : ℓ → r [φ ] abbreviates
∧
{x = x | x ∈ EVar(ρ)}

▶ substitution σ respects constraint φ (σ ⊨ φ) if σ(x) ∈ Val for x ∈ Var(φ) and [[φσ ]] = ⊤
▶ constrained equation s ≈ t [φ ] is trivial if sσ = tσ for every substitution σ with σ ⊨ φ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 7/27



Definitions

▶ overlap of LCTRS R is triple ⟨ρ1,p, ρ2⟩ such that

1 ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ] are variable–disjoint variants of rules in Rrc

2 p ∈ PosF (ℓ2 )

3 ℓ1 and ℓ2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1 ) ∪ LVar(ρ2 )

4 φ1σ ∧ φ2σ is satisfiable

5 if p = ϵ then ρ1 and ρ2 are not variants or Var(r1 ) ⊈ Var(ℓ1 )

▶ ℓ2σ [r1σ ]p ≈ r2σ [φ1σ ∧ φ2σ ∧ ψσ ] is induced constrained critical pair

▶ EVar(ℓ → r [φ ]) = Var(r ) \ (Var(ℓ) ∪ Var(φ)) is set of extra variables

▶ ψ = ECρ1 ∧ ECρ2 where ECρ with ρ : ℓ → r [φ ] abbreviates
∧
{x = x | x ∈ EVar(ρ)}

▶ substitution σ respects constraint φ (σ ⊨ φ) if σ(x) ∈ Val for x ∈ Var(φ) and [[φσ ]] = ⊤

▶ constrained equation s ≈ t [φ ] is trivial if sσ = tσ for every substitution σ with σ ⊨ φ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 7/27



Definitions

▶ overlap of LCTRS R is triple ⟨ρ1,p, ρ2⟩ such that

1 ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ] are variable–disjoint variants of rules in Rrc

2 p ∈ PosF (ℓ2 )

3 ℓ1 and ℓ2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1 ) ∪ LVar(ρ2 )

4 φ1σ ∧ φ2σ is satisfiable

5 if p = ϵ then ρ1 and ρ2 are not variants or Var(r1 ) ⊈ Var(ℓ1 )

▶ ℓ2σ [r1σ ]p ≈ r2σ [φ1σ ∧ φ2σ ∧ ψσ ] is induced constrained critical pair

▶ EVar(ℓ → r [φ ]) = Var(r ) \ (Var(ℓ) ∪ Var(φ)) is set of extra variables

▶ ψ = ECρ1 ∧ ECρ2 where ECρ with ρ : ℓ → r [φ ] abbreviates
∧
{x = x | x ∈ EVar(ρ)}

▶ substitution σ respects constraint φ (σ ⊨ φ) if σ(x) ∈ Val for x ∈ Var(φ) and [[φσ ]] = ⊤
▶ constrained equation s ≈ t [φ ] is trivial if sσ = tσ for every substitution σ with σ ⊨ φ

IWC 2025 2 September 2025 1. Logically Constrained Rewrite Systems 7/27



Outline

1. Logically Constrained Rewrite Systems

2. Confluence Results

3. Redundant Rules

4. Reduction Method

5. Conclusion

IWC 2025 2 September 2025 2. Confluence Results 8/27



Confluence Methods for TRSs

CADE 2023

critical pair closing systems decreasing diagrams development closed critical pairs

discrimination pairs

joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs parallel critical pairs reduction method

redundant rules rule labeling simultaneous critical pairs source labeling

strongly closed critical pairs tree automata weak orthogonality Z property · · ·

Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort

IWC 2025 2 September 2025 2. Confluence Results 9/27



Confluence Methods for TRSs

CADE 2023

critical pair closing systems decreasing diagrams development closed critical pairs

discrimination pairs joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs parallel critical pairs reduction method

redundant rules rule labeling simultaneous critical pairs source labeling

strongly closed critical pairs tree automata weak orthogonality Z property · · ·

Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort

IWC 2025 2 September 2025 2. Confluence Results 9/27



Confluence Methods for TRSs

CADE 2023

critical pair closing systems decreasing diagrams development closed critical pairs

discrimination pairs joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs parallel critical pairs reduction method

redundant rules rule labeling simultaneous critical pairs source labeling

strongly closed critical pairs tree automata weak orthogonality Z property · · ·

Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort

IWC 2025 2 September 2025 2. Confluence Results 9/27



Theorem

(local) confluence is decidable for finite terminating TRSs

Theorem (IJCAR 2024)

(local) confluence of terminating LCTRSs is undecidable, even if underlying theory is decidable

Definition (Transformation)

LCTRS R is transformed into TRS R consisting of

ℓτ → r τ

for all ρ : ℓ → r [φ ] ∈ Rrc and substitutions τ with τ ⊨ ρ and Dom(τ) = LVar(ρ)

Corollary

LCTRS R is confluent ⇐⇒ TRS R is confluent

IWC 2025 2 September 2025 2. Confluence Results 10/27



Theorem

(local) confluence is decidable for finite terminating TRSs

Theorem (IJCAR 2024)

(local) confluence of terminating LCTRSs is undecidable, even if underlying theory is decidable

Definition (Transformation)

LCTRS R is transformed into TRS R consisting of

ℓτ → r τ

for all ρ : ℓ → r [φ ] ∈ Rrc and substitutions τ with τ ⊨ ρ and Dom(τ) = LVar(ρ)

Corollary

LCTRS R is confluent ⇐⇒ TRS R is confluent

IWC 2025 2 September 2025 2. Confluence Results 10/27



Theorem

(local) confluence is decidable for finite terminating TRSs

Theorem (IJCAR 2024)

(local) confluence of terminating LCTRSs is undecidable, even if underlying theory is decidable

Definition (Transformation)

LCTRS R is transformed into TRS R consisting of

ℓτ → r τ

for all ρ : ℓ → r [φ ] ∈ Rrc and substitutions τ with τ ⊨ ρ and Dom(τ) = LVar(ρ)

Corollary

LCTRS R is confluent ⇐⇒ TRS R is confluent

IWC 2025 2 September 2025 2. Confluence Results 10/27



Theorem

(local) confluence is decidable for finite terminating TRSs

Theorem (IJCAR 2024)

(local) confluence of terminating LCTRSs is undecidable, even if underlying theory is decidable

Definition (Transformation)

LCTRS R is transformed into TRS R consisting of

ℓτ → r τ

for all ρ : ℓ → r [φ ] ∈ Rrc and substitutions τ with τ ⊨ ρ and Dom(τ) = LVar(ρ)

Corollary

LCTRS R is confluent ⇐⇒ TRS R is confluent

IWC 2025 2 September 2025 2. Confluence Results 10/27



Remark

advanced confluence criteria require rewriting of constrained terms and equations

Definitions

▶ constraint φ is valid if [[φγ ]] = ⊤ for all substitutions γ such that γ(x) ∈ Val for x ∈ Var(φ)

▶ constrained terms s [φ ] and t [ψ ] are equivalent (s [φ ] ∼ t [ψ ]) if for every substitution

γ ⊨ φ with Dom(σ) = Var(φ) there is substitution δ ⊨ ψ with Dom(δ) = Var(ψ ) such that

sγ = tδ, and vice versa

▶ s [φ ] →R t [φ ] if s|p = ℓσ and t = s[rσ ]p for some position p, constrained rewrite rule

ℓ → r [ψ ] in Rrc and substitution σ such that σ(x) ∈ Val ∪ Var(φ) for all x ∈ LVar(ρ),

φ is satisfiable and φ⇒ ψσ is valid

▶ rewrite relation ∼−→R on constrained terms is defined as ∼ · →R · ∼
▶ LCTRSs R and S share same theory (R ≃ S ) if they differ only in Fte and their respective

rule sets

IWC 2025 2 September 2025 2. Confluence Results 11/27



Remark

advanced confluence criteria require rewriting of constrained terms and equations

Definitions

▶ constraint φ is valid if [[φγ ]] = ⊤ for all substitutions γ such that γ(x) ∈ Val for x ∈ Var(φ)

▶ constrained terms s [φ ] and t [ψ ] are equivalent (s [φ ] ∼ t [ψ ]) if for every substitution

γ ⊨ φ with Dom(σ) = Var(φ) there is substitution δ ⊨ ψ with Dom(δ) = Var(ψ ) such that

sγ = tδ, and vice versa

▶ s [φ ] →R t [φ ] if s|p = ℓσ and t = s[rσ ]p for some position p, constrained rewrite rule

ℓ → r [ψ ] in Rrc and substitution σ such that σ(x) ∈ Val ∪ Var(φ) for all x ∈ LVar(ρ),

φ is satisfiable and φ⇒ ψσ is valid

▶ rewrite relation ∼−→R on constrained terms is defined as ∼ · →R · ∼
▶ LCTRSs R and S share same theory (R ≃ S ) if they differ only in Fte and their respective

rule sets

IWC 2025 2 September 2025 2. Confluence Results 11/27



Remark

advanced confluence criteria require rewriting of constrained terms and equations

Definitions

▶ constraint φ is valid if [[φγ ]] = ⊤ for all substitutions γ such that γ(x) ∈ Val for x ∈ Var(φ)

▶ constrained terms s [φ ] and t [ψ ] are equivalent (s [φ ] ∼ t [ψ ]) if for every substitution

γ ⊨ φ with Dom(σ) = Var(φ) there is substitution δ ⊨ ψ with Dom(δ) = Var(ψ ) such that

sγ = tδ, and vice versa

▶ s [φ ] →R t [φ ] if s|p = ℓσ and t = s[rσ ]p for some position p, constrained rewrite rule

ℓ → r [ψ ] in Rrc and substitution σ such that σ(x) ∈ Val ∪ Var(φ) for all x ∈ LVar(ρ),

φ is satisfiable and φ⇒ ψσ is valid

▶ rewrite relation ∼−→R on constrained terms is defined as ∼ · →R · ∼
▶ LCTRSs R and S share same theory (R ≃ S ) if they differ only in Fte and their respective

rule sets

IWC 2025 2 September 2025 2. Confluence Results 11/27



Remark

advanced confluence criteria require rewriting of constrained terms and equations

Definitions

▶ constraint φ is valid if [[φγ ]] = ⊤ for all substitutions γ such that γ(x) ∈ Val for x ∈ Var(φ)

▶ constrained terms s [φ ] and t [ψ ] are equivalent (s [φ ] ∼ t [ψ ]) if for every substitution

γ ⊨ φ with Dom(σ) = Var(φ) there is substitution δ ⊨ ψ with Dom(δ) = Var(ψ ) such that

sγ = tδ, and vice versa

▶ s [φ ] →R t [φ ] if s|p = ℓσ and t = s[rσ ]p for some position p, constrained rewrite rule

ℓ → r [ψ ] in Rrc and substitution σ such that σ(x) ∈ Val ∪ Var(φ) for all x ∈ LVar(ρ),

φ is satisfiable and φ⇒ ψσ is valid

▶ rewrite relation ∼−→R on constrained terms is defined as ∼ · →R · ∼
▶ LCTRSs R and S share same theory (R ≃ S ) if they differ only in Fte and their respective

rule sets

IWC 2025 2 September 2025 2. Confluence Results 11/27



Remark

advanced confluence criteria require rewriting of constrained terms and equations

Definitions

▶ constraint φ is valid if [[φγ ]] = ⊤ for all substitutions γ such that γ(x) ∈ Val for x ∈ Var(φ)

▶ constrained terms s [φ ] and t [ψ ] are equivalent (s [φ ] ∼ t [ψ ]) if for every substitution

γ ⊨ φ with Dom(σ) = Var(φ) there is substitution δ ⊨ ψ with Dom(δ) = Var(ψ ) such that

sγ = tδ, and vice versa

▶ s [φ ] →R t [φ ] if s|p = ℓσ and t = s[rσ ]p for some position p, constrained rewrite rule

ℓ → r [ψ ] in Rrc and substitution σ such that σ(x) ∈ Val ∪ Var(φ) for all x ∈ LVar(ρ),

φ is satisfiable and φ⇒ ψσ is valid

▶ rewrite relation ∼−→R on constrained terms is defined as ∼ · →R · ∼

▶ LCTRSs R and S share same theory (R ≃ S ) if they differ only in Fte and their respective

rule sets

IWC 2025 2 September 2025 2. Confluence Results 11/27



Remark

advanced confluence criteria require rewriting of constrained terms and equations

Definitions

▶ constraint φ is valid if [[φγ ]] = ⊤ for all substitutions γ such that γ(x) ∈ Val for x ∈ Var(φ)

▶ constrained terms s [φ ] and t [ψ ] are equivalent (s [φ ] ∼ t [ψ ]) if for every substitution

γ ⊨ φ with Dom(σ) = Var(φ) there is substitution δ ⊨ ψ with Dom(δ) = Var(ψ ) such that

sγ = tδ, and vice versa

▶ s [φ ] →R t [φ ] if s|p = ℓσ and t = s[rσ ]p for some position p, constrained rewrite rule

ℓ → r [ψ ] in Rrc and substitution σ such that σ(x) ∈ Val ∪ Var(φ) for all x ∈ LVar(ρ),

φ is satisfiable and φ⇒ ψσ is valid

▶ rewrite relation ∼−→R on constrained terms is defined as ∼ · →R · ∼
▶ LCTRSs R and S share same theory (R ≃ S ) if they differ only in Fte and their respective

rule sets

IWC 2025 2 September 2025 2. Confluence Results 11/27



Confluence Methods for LCTRSs

CADE 2023

critical pair closing systems decreasing diagrams development closed critical pairs

discrimination pairs

joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs parallel critical pairs reduction method

redundant rules rule labeling simultaneous critical pairs source labeling

strongly closed critical pairs tree automata

weak orthogonality

Z property · · ·

Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort

IWC 2025 2 September 2025 2. Confluence Results 12/27



Confluence Methods for LCTRSs CADE 2023

critical pair closing systems decreasing diagrams development closed critical pairs

discrimination pairs

joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs

parallel critical pairs reduction method

redundant rules rule labeling simultaneous critical pairs source labeling

strongly closed critical pairs

tree automata

weak orthogonality

Z property · · ·

Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort

IWC 2025 2 September 2025 2. Confluence Results 12/27



Confluence Methods for LCTRSs IJCAR 2024

critical pair closing systems decreasing diagrams

development closed critical pairs

discrimination pairs

joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs parallel critical pairs

reduction method

redundant rules rule labeling simultaneous critical pairs source labeling

strongly closed critical pairs

tree automata

weak orthogonality

Z property · · ·

Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort

IWC 2025 2 September 2025 2. Confluence Results 12/27



Confluence Methods for LCTRSs TACAS 2025

critical pair closing systems decreasing diagrams

development closed critical pairs

discrimination pairs

joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs parallel critical pairs

reduction method

redundant rules rule labeling simultaneous critical pairs source labeling

strongly closed critical pairs

tree automata

weak orthogonality

Z property

· · ·

Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort

IWC 2025 2 September 2025 2. Confluence Results 12/27



Outline

1. Logically Constrained Rewrite Systems

2. Confluence Results

3. Redundant Rules

4. Reduction Method

5. Conclusion

IWC 2025 2 September 2025 3. Redundant Rules 13/27



Definition

rewrite rule ℓ → r ∈ R is redundant if ℓ →∗
R\{ℓ→ r} r

Theorem (Nagele, Felgenhauer, Middeldorp 2015)

if ℓ → r ∈ R is redundant then R is confluent ⇐⇒ R \ {ℓ → r} is confluent

Example

▶ TRS R = {f(f(x)) → x, f(x) → f(f(x))} has two non–trivial critical pairs 409

f(f(f(x))) ≈ x x ≈ f(f(f(x)))

which are joinable f(f(f(x))) → f(x) → f(f(x)) → x but not by development step

▶ adding rule f(x) → x results in four new critical pairs

▶ resulting TRS is development–closed

IWC 2025 2 September 2025 3. Redundant Rules 14/27

https://ari-cops.uibk.ac.at/ARI/?q=409


Definition

rewrite rule ℓ → r ∈ R is redundant if ℓ →∗
R\{ℓ→ r} r

Theorem (Nagele, Felgenhauer, Middeldorp 2015)

if ℓ → r ∈ R is redundant then R is confluent ⇐⇒ R \ {ℓ → r} is confluent

Example

▶ TRS R = {f(f(x)) → x, f(x) → f(f(x))} has two non–trivial critical pairs 409

f(f(f(x))) ≈ x x ≈ f(f(f(x)))

which are joinable f(f(f(x))) → f(x) → f(f(x)) → x but not by development step

▶ adding rule f(x) → x results in four new critical pairs

▶ resulting TRS is development–closed

IWC 2025 2 September 2025 3. Redundant Rules 14/27

https://ari-cops.uibk.ac.at/ARI/?q=409


Definition

rewrite rule ℓ → r ∈ R is redundant if ℓ →∗
R\{ℓ→ r} r

Theorem (Nagele, Felgenhauer, Middeldorp 2015)

if ℓ → r ∈ R is redundant then R is confluent ⇐⇒ R \ {ℓ → r} is confluent

Example

▶ TRS R = {f(f(x)) → x, f(x) → f(f(x))} has two non–trivial critical pairs 409

f(f(f(x))) ≈ x x ≈ f(f(f(x)))

which are joinable f(f(f(x))) → f(x) → f(f(x)) → x but not by development step

▶ adding rule f(x) → x results in four new critical pairs

▶ resulting TRS is development–closed

IWC 2025 2 September 2025 3. Redundant Rules 14/27

https://ari-cops.uibk.ac.at/ARI/?q=409


Definition

rewrite rule ℓ → r ∈ R is redundant if ℓ →∗
R\{ℓ→ r} r

Theorem (Nagele, Felgenhauer, Middeldorp 2015)

if ℓ → r ∈ R is redundant then R is confluent ⇐⇒ R \ {ℓ → r} is confluent

Example

▶ TRS R = {f(f(x)) → x, f(x) → f(f(x))} has two non–trivial critical pairs 409

f(f(f(x))) ≈ x x ≈ f(f(f(x)))

which are joinable f(f(f(x))) → f(x) → f(f(x)) → x

but not by development step

▶ adding rule f(x) → x results in four new critical pairs

▶ resulting TRS is development–closed

IWC 2025 2 September 2025 3. Redundant Rules 14/27

https://ari-cops.uibk.ac.at/ARI/?q=409


Definition

rewrite rule ℓ → r ∈ R is redundant if ℓ →∗
R\{ℓ→ r} r

Theorem (Nagele, Felgenhauer, Middeldorp 2015)

if ℓ → r ∈ R is redundant then R is confluent ⇐⇒ R \ {ℓ → r} is confluent

Example

▶ TRS R = {f(f(x)) → x, f(x) → f(f(x))} has two non–trivial critical pairs 409

f(f(f(x))) ≈ x x ≈ f(f(f(x)))

which are joinable f(f(f(x))) → f(x) → f(f(x)) → x but not by development step

▶ adding rule f(x) → x results in four new critical pairs

▶ resulting TRS is development–closed

IWC 2025 2 September 2025 3. Redundant Rules 14/27

https://ari-cops.uibk.ac.at/ARI/?q=409


Definition

rewrite rule ℓ → r ∈ R is redundant if ℓ →∗
R\{ℓ→ r} r

Theorem (Nagele, Felgenhauer, Middeldorp 2015)

if ℓ → r ∈ R is redundant then R is confluent ⇐⇒ R \ {ℓ → r} is confluent

Example

▶ TRS R = {f(f(x)) → x, f(x) → f(f(x))} has two non–trivial critical pairs 409

f(f(f(x))) ≈ x x ≈ f(f(f(x)))

which are joinable f(f(f(x))) → f(x) → f(f(x)) → x but not by development step

▶ adding rule f(x) → x results in four new critical pairs

▶ resulting TRS is development–closed

IWC 2025 2 September 2025 3. Redundant Rules 14/27

https://ari-cops.uibk.ac.at/ARI/?q=409


Definitions

▶ constrained rewrite rule ρ : ℓ → r [φ ] ∈ R is redundant if

ℓ ≈ r [φ ∧ ECρ ] ∼−→∗
R\{ρ},⩾1 ℓ′ ≈ r′ [ψ ]

for some trivial ℓ′ ≈ r′ [ψ ]

▶ set of constrained rules S is redundant in R if all its rules are redundant in R

Example

constrained rewrite rule ρ : f(x+ x)→ f(z) [ z = 2 · x ] ∈ R is redundant:

f(x+ x) ≈ f(z) [ z = 2 · x ] ∼−→R\{ρ},⩾1 f(z′) ≈ f(z) [ z = 2 · x ∧ z′ = x+ x ]

Theorem

if set of constrained rules S is redundant in LCTRS R and R ≃ S then

R is confluent ⇐⇒ R ∪ S is confluent

IWC 2025 2 September 2025 3. Redundant Rules 15/27



Definitions

▶ constrained rewrite rule ρ : ℓ → r [φ ] ∈ R is redundant if

ℓ ≈ r [φ ∧ ECρ ] ∼−→∗
R\{ρ},⩾1 ℓ′ ≈ r′ [ψ ]

for some trivial ℓ′ ≈ r′ [ψ ]

▶ set of constrained rules S is redundant in R if all its rules are redundant in R

Example

constrained rewrite rule ρ : f(x+ x)→ f(z) [ z = 2 · x ] ∈ R is redundant

:

f(x+ x) ≈ f(z) [ z = 2 · x ] ∼−→R\{ρ},⩾1 f(z′) ≈ f(z) [ z = 2 · x ∧ z′ = x+ x ]

Theorem

if set of constrained rules S is redundant in LCTRS R and R ≃ S then

R is confluent ⇐⇒ R ∪ S is confluent

IWC 2025 2 September 2025 3. Redundant Rules 15/27



Definitions

▶ constrained rewrite rule ρ : ℓ → r [φ ] ∈ R is redundant if

ℓ ≈ r [φ ∧ ECρ ] ∼−→∗
R\{ρ},⩾1 ℓ′ ≈ r′ [ψ ]

for some trivial ℓ′ ≈ r′ [ψ ]

▶ set of constrained rules S is redundant in R if all its rules are redundant in R

Example

constrained rewrite rule ρ : f(x+ x)→ f(z) [ z = 2 · x ] ∈ R is redundant:

f(x+ x) ≈ f(z) [ z = 2 · x ] ∼−→R\{ρ},⩾1 f(z′) ≈ f(z) [ z = 2 · x ∧ z′ = x+ x ]

Theorem

if set of constrained rules S is redundant in LCTRS R and R ≃ S then

R is confluent ⇐⇒ R ∪ S is confluent

IWC 2025 2 September 2025 3. Redundant Rules 15/27



Definitions

▶ constrained rewrite rule ρ : ℓ → r [φ ] ∈ R is redundant if

ℓ ≈ r [φ ∧ ECρ ] ∼−→∗
R\{ρ},⩾1 ℓ′ ≈ r′ [ψ ]

for some trivial ℓ′ ≈ r′ [ψ ]

▶ set of constrained rules S is redundant in R if all its rules are redundant in R

Example

constrained rewrite rule ρ : f(x+ x)→ f(z) [ z = 2 · x ] ∈ R is redundant:

f(x+ x) ≈ f(z) [ z = 2 · x ] ∼−→R\{ρ},⩾1 f(z′) ≈ f(z) [ z = 2 · x ∧ z′ = x+ x ]

Theorem

if set of constrained rules S is redundant in LCTRS R and R ≃ S then

R is confluent ⇐⇒ R ∪ S is confluent

IWC 2025 2 September 2025 3. Redundant Rules 15/27



Definitions

▶ constrained rewrite rule ρ : ℓ → r [φ ] ∈ R is redundant if

ℓ ≈ r [φ ∧ ECρ ] ∼−→∗
R\{ρ},⩾1 ℓ′ ≈ r′ [ψ ]

for some trivial ℓ′ ≈ r′ [ψ ]

▶ set of constrained rules S is redundant in R if all its rules are redundant in R

Example

constrained rewrite rule ρ : f(x+ x)→ f(z) [ z = 2 · x ] ∈ R is redundant:

f(x+ x) ≈ f(z) [ z = 2 · x ] ∼−→R\{ρ},⩾1 f(z′) ≈ f(z) [ z = 2 · x ∧ z′ = x+ x ]

Theorem

if set of constrained rules S is redundant in LCTRS R and R ≃ S then

R is confluent ⇐⇒ R ∪ S is confluent

IWC 2025 2 September 2025 3. Redundant Rules 15/27



Theorem

if for every rule ρ : ℓ → r [φ ] ∈ S

ℓ ≈ r [φ ∧ ECρ ] ∼←→∗
R\{ρ},> ϵ ℓ′ ≈ r′ [ψ ]

for some trivial ℓ′ ≈ r′ [ψ ] and R ≃ S then

R is confluent =⇒ R ∪ S is confluent

Example

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

IWC 2025 2 September 2025 3. Redundant Rules 16/27



Theorem

if for every rule ρ : ℓ → r [φ ] ∈ S

ℓ ≈ r [φ ∧ ECρ ] ∼←→∗
R\{ρ},> ϵ ℓ′ ≈ r′ [ψ ]

for some trivial ℓ′ ≈ r′ [ψ ] and R ≃ S then

R is confluent =⇒ R ∪ S is confluent

Example

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

IWC 2025 2 September 2025 3. Redundant Rules 16/27



Theorem

if for every rule ρ : ℓ → r [φ ] ∈ S

ℓ ≈ r [φ ∧ ECρ ] ∼←→∗
R\{ρ},> ϵ ℓ′ ≈ r′ [ψ ]

for some trivial ℓ′ ≈ r′ [ψ ] and R ≃ S then

R is confluent =⇒ R ∪ S is confluent

Example

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

IWC 2025 2 September 2025 3. Redundant Rules 16/27



Example (cont’d)

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

conversion of β

f(x, y) ≈ d(x, y) [φ ] ∼←→R\{β},> ϵ x+ y ≈ d(x, y) [φ ]

∼←→R\{β},> ϵ x+ y ≈ y+ x [φ ]
∼←→R\{β},> ϵ z ≈ y+ x [φ ∧ z = x+ y ]
∼←→R\{β},> ϵ z ≈ z′ [φ ∧ z = x+ y ∧ z′ = y+ x ]

LCTRS R \ {β} is orthogonal =⇒ R confluent

IWC 2025 2 September 2025 3. Redundant Rules 17/27



Example (cont’d)

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

conversion of β

f(x, y) ≈ d(x, y) [φ ] ∼←→R\{β},> ϵ x+ y ≈ d(x, y) [φ ]

∼←→R\{β},> ϵ x+ y ≈ y+ x [φ ]
∼←→R\{β},> ϵ z ≈ y+ x [φ ∧ z = x+ y ]
∼←→R\{β},> ϵ z ≈ z′ [φ ∧ z = x+ y ∧ z′ = y+ x ]

LCTRS R \ {β} is orthogonal =⇒ R confluent

IWC 2025 2 September 2025 3. Redundant Rules 17/27



Example (cont’d)

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

conversion of β

f(x, y) ≈ d(x, y) [φ ] ∼←→R\{β},> ϵ x+ y ≈ d(x, y) [φ ]
∼←→R\{β},> ϵ x+ y ≈ y+ x [φ ]

∼←→R\{β},> ϵ z ≈ y+ x [φ ∧ z = x+ y ]
∼←→R\{β},> ϵ z ≈ z′ [φ ∧ z = x+ y ∧ z′ = y+ x ]

LCTRS R \ {β} is orthogonal =⇒ R confluent

IWC 2025 2 September 2025 3. Redundant Rules 17/27



Example (cont’d)

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

conversion of β

f(x, y) ≈ d(x, y) [φ ] ∼←→R\{β},> ϵ x+ y ≈ d(x, y) [φ ]
∼←→R\{β},> ϵ x+ y ≈ y+ x [φ ]
∼←→R\{β},> ϵ z ≈ y+ x [φ ∧ z = x+ y ]

∼←→R\{β},> ϵ z ≈ z′ [φ ∧ z = x+ y ∧ z′ = y+ x ]

LCTRS R \ {β} is orthogonal =⇒ R confluent

IWC 2025 2 September 2025 3. Redundant Rules 17/27



Example (cont’d)

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

conversion of β

f(x, y) ≈ d(x, y) [φ ] ∼←→R\{β},> ϵ x+ y ≈ d(x, y) [φ ]
∼←→R\{β},> ϵ x+ y ≈ y+ x [φ ]
∼←→R\{β},> ϵ z ≈ y+ x [φ ∧ z = x+ y ]
∼←→R\{β},> ϵ z ≈ z′ [φ ∧ z = x+ y ∧ z′ = y+ x ]

LCTRS R \ {β} is orthogonal =⇒ R confluent

IWC 2025 2 September 2025 3. Redundant Rules 17/27



Example (cont’d)

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

conversion of β

f(x, y) ≈ d(x, y) [φ ] ∼←→R\{β},> ϵ x+ y ≈ d(x, y) [φ ]
∼←→R\{β},> ϵ x+ y ≈ y+ x [φ ]
∼←→R\{β},> ϵ z ≈ y+ x [φ ∧ z = x+ y ]
∼←→R\{β},> ϵ z ≈ z′ [φ ∧ z = x+ y ∧ z′ = y+ x ]

LCTRS R \ {β} is orthogonal

=⇒ R confluent

IWC 2025 2 September 2025 3. Redundant Rules 17/27



Example (cont’d)

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

conversion of β

f(x, y) ≈ d(x, y) [φ ] ∼←→R\{β},> ϵ x+ y ≈ d(x, y) [φ ]
∼←→R\{β},> ϵ x+ y ≈ y+ x [φ ]
∼←→R\{β},> ϵ z ≈ y+ x [φ ∧ z = x+ y ]
∼←→R\{β},> ϵ z ≈ z′ [φ ∧ z = x+ y ∧ z′ = y+ x ]

LCTRS R \ {β} is orthogonal =⇒ R confluent

IWC 2025 2 September 2025 3. Redundant Rules 17/27



Implementation Heuristics

1 for s ≈ t [φ ] ∈ CCP(R) if

s ≈ t [φ ] ◦−→2
R,⩾1 · ◦−→2

R,⩾2 u ≈ v [ψ ]

for trivial u ≈ v [ψ ] then add s → u [φ ] and t → v [φ ] to R

2 for ρ : ℓ → r [φ ] ∈ R if

r [φ ∧ ECρ ] ◦−→2
R r′ [ψ ]

then add ℓ → r′ [φ ] to R

3 remove ρ : ℓ → r [φ ] from R if

ℓ ≈ r [φ ∧ ECρ ] ◦−→2
R\{ρ},⩾1 · ◦−→2

R\{ρ},⩾2 u ≈ v [ψ ]

for trivial u ≈ v [ψ ]

IWC 2025 2 September 2025 3. Redundant Rules 18/27



Implementation Heuristics

1 for s ≈ t [φ ] ∈ CCP(R) if

s ≈ t [φ ] ◦−→2
R,⩾1 · ◦−→2

R,⩾2 u ≈ v [ψ ]

for trivial u ≈ v [ψ ] then add s → u [φ ] and t → v [φ ] to R

2 for ρ : ℓ → r [φ ] ∈ R if

r [φ ∧ ECρ ] ◦−→2
R r′ [ψ ]

then add ℓ → r′ [φ ] to R

3 remove ρ : ℓ → r [φ ] from R if

ℓ ≈ r [φ ∧ ECρ ] ◦−→2
R\{ρ},⩾1 · ◦−→2

R\{ρ},⩾2 u ≈ v [ψ ]

for trivial u ≈ v [ψ ]

IWC 2025 2 September 2025 3. Redundant Rules 18/27



Implementation Heuristics

1 for s ≈ t [φ ] ∈ CCP(R) if

s ≈ t [φ ] ◦−→2
R,⩾1 · ◦−→2

R,⩾2 u ≈ v [ψ ]

for trivial u ≈ v [ψ ] then add s → u [φ ] and t → v [φ ] to R

2 for ρ : ℓ → r [φ ] ∈ R if

r [φ ∧ ECρ ] ◦−→2
R r′ [ψ ]

then add ℓ → r′ [φ ] to R

3 remove ρ : ℓ → r [φ ] from R if

ℓ ≈ r [φ ∧ ECρ ] ◦−→2
R\{ρ},⩾1 · ◦−→2

R\{ρ},⩾2 u ≈ v [ψ ]

for trivial u ≈ v [ψ ]

IWC 2025 2 September 2025 3. Redundant Rules 18/27



Outline

1. Logically Constrained Rewrite Systems

2. Confluence Results

3. Redundant Rules

4. Reduction Method

5. Conclusion

IWC 2025 2 September 2025 4. Reduction Method 19/27



Definitions

▶ PCP(R) denotes set of parallel critical pairs of TRS R

▶ TRS R is convertible by TRS C if C ⊆ R and s↔∗
C t for all s ≈ t ∈ PCP(R)

Theorem (Shintani & Hirokawa 2024)

left–linear TRS R is confluent if R is convertible by confluent TRS C

Definitions

▶ LCTRS C is subsystem of LCTRS R (C ⊑ R) if C ≃ R and C ⊆ R

▶ constrained parallel critical pair s ≈ t [φ ] is convertible by LCTRS C if

s ≈ t [φ ] ∼←→∗
C,> ϵ s′ ≈ t′ [ψ ]

for some trivial s′ ≈ t′ [ψ ]

▶ LCTRS R is convertible by C if C ⊑ R and all constrained parallel critical pairs CPCP(R) of

R are convertible by C

IWC 2025 2 September 2025 4. Reduction Method 20/27



Definitions

▶ PCP(R) denotes set of parallel critical pairs of TRS R
▶ TRS R is convertible by TRS C if C ⊆ R and s↔∗

C t for all s ≈ t ∈ PCP(R)

Theorem (Shintani & Hirokawa 2024)

left–linear TRS R is confluent if R is convertible by confluent TRS C

Definitions

▶ LCTRS C is subsystem of LCTRS R (C ⊑ R) if C ≃ R and C ⊆ R

▶ constrained parallel critical pair s ≈ t [φ ] is convertible by LCTRS C if

s ≈ t [φ ] ∼←→∗
C,> ϵ s′ ≈ t′ [ψ ]

for some trivial s′ ≈ t′ [ψ ]

▶ LCTRS R is convertible by C if C ⊑ R and all constrained parallel critical pairs CPCP(R) of

R are convertible by C

IWC 2025 2 September 2025 4. Reduction Method 20/27



Definitions

▶ PCP(R) denotes set of parallel critical pairs of TRS R
▶ TRS R is convertible by TRS C if C ⊆ R and s↔∗

C t for all s ≈ t ∈ PCP(R)

Theorem (Shintani & Hirokawa 2024)

left–linear TRS R is confluent if R is convertible by confluent TRS C

Definitions

▶ LCTRS C is subsystem of LCTRS R (C ⊑ R) if C ≃ R and C ⊆ R

▶ constrained parallel critical pair s ≈ t [φ ] is convertible by LCTRS C if

s ≈ t [φ ] ∼←→∗
C,> ϵ s′ ≈ t′ [ψ ]

for some trivial s′ ≈ t′ [ψ ]

▶ LCTRS R is convertible by C if C ⊑ R and all constrained parallel critical pairs CPCP(R) of

R are convertible by C

IWC 2025 2 September 2025 4. Reduction Method 20/27



Definitions

▶ PCP(R) denotes set of parallel critical pairs of TRS R
▶ TRS R is convertible by TRS C if C ⊆ R and s↔∗

C t for all s ≈ t ∈ PCP(R)

Theorem (Shintani & Hirokawa 2024)

left–linear TRS R is confluent if R is convertible by confluent TRS C

Definitions

▶ LCTRS C is subsystem of LCTRS R (C ⊑ R) if C ≃ R and C ⊆ R

▶ constrained parallel critical pair s ≈ t [φ ] is convertible by LCTRS C if

s ≈ t [φ ] ∼←→∗
C,> ϵ s′ ≈ t′ [ψ ]

for some trivial s′ ≈ t′ [ψ ]

▶ LCTRS R is convertible by C if C ⊑ R and all constrained parallel critical pairs CPCP(R) of

R are convertible by C

IWC 2025 2 September 2025 4. Reduction Method 20/27



Definitions

▶ PCP(R) denotes set of parallel critical pairs of TRS R
▶ TRS R is convertible by TRS C if C ⊆ R and s↔∗

C t for all s ≈ t ∈ PCP(R)

Theorem (Shintani & Hirokawa 2024)

left–linear TRS R is confluent if R is convertible by confluent TRS C

Definitions

▶ LCTRS C is subsystem of LCTRS R (C ⊑ R) if C ≃ R and C ⊆ R
▶ constrained parallel critical pair s ≈ t [φ ] is convertible by LCTRS C if

s ≈ t [φ ] ∼←→∗
C,> ϵ s′ ≈ t′ [ψ ]

for some trivial s′ ≈ t′ [ψ ]

▶ LCTRS R is convertible by C if C ⊑ R and all constrained parallel critical pairs CPCP(R) of

R are convertible by C

IWC 2025 2 September 2025 4. Reduction Method 20/27



Definitions

▶ PCP(R) denotes set of parallel critical pairs of TRS R
▶ TRS R is convertible by TRS C if C ⊆ R and s↔∗

C t for all s ≈ t ∈ PCP(R)

Theorem (Shintani & Hirokawa 2024)

left–linear TRS R is confluent if R is convertible by confluent TRS C

Definitions

▶ LCTRS C is subsystem of LCTRS R (C ⊑ R) if C ≃ R and C ⊆ R
▶ constrained parallel critical pair s ≈ t [φ ] is convertible by LCTRS C if

s ≈ t [φ ] ∼←→∗
C,> ϵ s′ ≈ t′ [ψ ]

for some trivial s′ ≈ t′ [ψ ]

▶ LCTRS R is convertible by C if C ⊑ R and all constrained parallel critical pairs CPCP(R) of

R are convertible by C

IWC 2025 2 September 2025 4. Reduction Method 20/27



Theorem

left–linear LCTRS R is confluent if R is convertible by confluent LCTRS C

Example

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two parallel constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

both are convertible by C = {δ}

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] →C x+ y ≈ y+ x [ x > 0 ∧ φ ]

→∗
C z ≈ z′ [ x > 0 ∧ φ ∧ z = x+ y ∧ z′ = y+ x ]

IWC 2025 2 September 2025 4. Reduction Method 21/27



Theorem

left–linear LCTRS R is confluent if R is convertible by confluent LCTRS C

Example

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two parallel constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

both are convertible by C = {δ}

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] →C x+ y ≈ y+ x [ x > 0 ∧ φ ]

→∗
C z ≈ z′ [ x > 0 ∧ φ ∧ z = x+ y ∧ z′ = y+ x ]

IWC 2025 2 September 2025 4. Reduction Method 21/27



Theorem

left–linear LCTRS R is confluent if R is convertible by confluent LCTRS C

Example

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two parallel constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

both are convertible by C = {δ}

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] →C x+ y ≈ y+ x [ x > 0 ∧ φ ]

→∗
C z ≈ z′ [ x > 0 ∧ φ ∧ z = x+ y ∧ z′ = y+ x ]

IWC 2025 2 September 2025 4. Reduction Method 21/27



Theorem

left–linear LCTRS R is confluent if R is convertible by confluent LCTRS C

Example

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two parallel constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

both are convertible by C = {δ}

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] →C x+ y ≈ y+ x [ x > 0 ∧ φ ]

→∗
C z ≈ z′ [ x > 0 ∧ φ ∧ z = x+ y ∧ z′ = y+ x ]

IWC 2025 2 September 2025 4. Reduction Method 21/27



Notation

R↾C = {ℓ→ r ∈ R | Fun(ℓ) ⊆ Fun(C )} for TRSs R and C

Theorem (Shintani & Hirokawa 2024)

if R↾C ⊆ →∗
C ⊆ →∗

R and R is confluent then C is confluent

Definitions

▶ Fun te(s) = Fun(s) \ Fth

▶ R↾C = {ℓ → r [φ ] ∈ R | Fun te(ℓ) ⊆ Fun te(C)} for LCTRSs R and C
▶ R↾C is simulated by C if every ρ : ℓ → r [φ ] ∈ R↾C satisfies

ℓ ≈ r [φ ∧ ECρ ] ∼−→∗
C,> ϵ u ≈ v [ψ ]

for some trivial u ≈ v [ψ ]

IWC 2025 2 September 2025 4. Reduction Method 22/27



Notation

R↾C = {ℓ→ r ∈ R | Fun(ℓ) ⊆ Fun(C )} for TRSs R and C

Theorem (Shintani & Hirokawa 2024)

if R↾C ⊆ →∗
C ⊆ →∗

R and R is confluent then C is confluent

Definitions

▶ Fun te(s) = Fun(s) \ Fth

▶ R↾C = {ℓ → r [φ ] ∈ R | Fun te(ℓ) ⊆ Fun te(C)} for LCTRSs R and C
▶ R↾C is simulated by C if every ρ : ℓ → r [φ ] ∈ R↾C satisfies

ℓ ≈ r [φ ∧ ECρ ] ∼−→∗
C,> ϵ u ≈ v [ψ ]

for some trivial u ≈ v [ψ ]

IWC 2025 2 September 2025 4. Reduction Method 22/27



Notation

R↾C = {ℓ→ r ∈ R | Fun(ℓ) ⊆ Fun(C )} for TRSs R and C

Theorem (Shintani & Hirokawa 2024)

if R↾C ⊆ →∗
C ⊆ →∗

R and R is confluent then C is confluent

Definitions

▶ Fun te(s) = Fun(s) \ Fth

▶ R↾C = {ℓ → r [φ ] ∈ R | Fun te(ℓ) ⊆ Fun te(C)} for LCTRSs R and C
▶ R↾C is simulated by C if every ρ : ℓ → r [φ ] ∈ R↾C satisfies

ℓ ≈ r [φ ∧ ECρ ] ∼−→∗
C,> ϵ u ≈ v [ψ ]

for some trivial u ≈ v [ψ ]

IWC 2025 2 September 2025 4. Reduction Method 22/27



Notation

R↾C = {ℓ→ r ∈ R | Fun(ℓ) ⊆ Fun(C )} for TRSs R and C

Theorem (Shintani & Hirokawa 2024)

if R↾C ⊆ →∗
C ⊆ →∗

R and R is confluent then C is confluent

Definitions

▶ Fun te(s) = Fun(s) \ Fth

▶ R↾C = {ℓ → r [φ ] ∈ R | Fun te(ℓ) ⊆ Fun te(C)} for LCTRSs R and C
▶ R↾C is simulated by C if every ρ : ℓ → r [φ ] ∈ R↾C satisfies

ℓ ≈ r [φ ∧ ECρ ] ∼−→∗
C,> ϵ u ≈ v [ψ ]

for some trivial u ≈ v [ψ ]

IWC 2025 2 September 2025 4. Reduction Method 22/27



Notation

R↾C = {ℓ→ r ∈ R | Fun(ℓ) ⊆ Fun(C )} for TRSs R and C

Theorem (Shintani & Hirokawa 2024)

if R↾C ⊆ →∗
C ⊆ →∗

R and R is confluent then C is confluent

Definitions

▶ Fun te(s) = Fun(s) \ Fth

▶ R↾C = {ℓ → r [φ ] ∈ R | Fun te(ℓ) ⊆ Fun te(C)} for LCTRSs R and C

▶ R↾C is simulated by C if every ρ : ℓ → r [φ ] ∈ R↾C satisfies

ℓ ≈ r [φ ∧ ECρ ] ∼−→∗
C,> ϵ u ≈ v [ψ ]

for some trivial u ≈ v [ψ ]

IWC 2025 2 September 2025 4. Reduction Method 22/27



Notation

R↾C = {ℓ→ r ∈ R | Fun(ℓ) ⊆ Fun(C )} for TRSs R and C

Theorem (Shintani & Hirokawa 2024)

if R↾C ⊆ →∗
C ⊆ →∗

R and R is confluent then C is confluent

Definitions

▶ Fun te(s) = Fun(s) \ Fth

▶ R↾C = {ℓ → r [φ ] ∈ R | Fun te(ℓ) ⊆ Fun te(C)} for LCTRSs R and C
▶ R↾C is simulated by C if every ρ : ℓ → r [φ ] ∈ R↾C satisfies

ℓ ≈ r [φ ∧ ECρ ] ∼−→∗
C,> ϵ u ≈ v [ψ ]

for some trivial u ≈ v [ψ ]

IWC 2025 2 September 2025 4. Reduction Method 22/27



Lemma

if R↾C is simulated by C and C ⊑ R then R↾C ⊆ →∗
C

Corollary

if R↾C is simulated by C and C ⊑ R then

R is confluent =⇒ C is confluent

Corollary

if left–linear LCTRS R is convertible by LCTRS C and R↾C is simulated by C then

R is confluent ⇐⇒ C is confluent

IWC 2025 2 September 2025 4. Reduction Method 23/27



Lemma

if R↾C is simulated by C and C ⊑ R then R↾C ⊆ →∗
C

Corollary

if R↾C is simulated by C and C ⊑ R then

R is confluent =⇒ C is confluent

Corollary

if left–linear LCTRS R is convertible by LCTRS C and R↾C is simulated by C then

R is confluent ⇐⇒ C is confluent

IWC 2025 2 September 2025 4. Reduction Method 23/27



Lemma

if R↾C is simulated by C and C ⊑ R then R↾C ⊆ →∗
C

Corollary

if R↾C is simulated by C and C ⊑ R then

R is confluent =⇒ C is confluent

Corollary

if left–linear LCTRS R is convertible by LCTRS C and R↾C is simulated by C then

R is confluent ⇐⇒ C is confluent

IWC 2025 2 September 2025 4. Reduction Method 23/27



Outline

1. Logically Constrained Rewrite Systems

2. Confluence Results

3. Redundant Rules

4. Reduction Method

5. Conclusion

IWC 2025 2 September 2025 5. Conclusion 24/27



Confluence Methods for LCTRSs TACAS 2025

critical pair closing systems decreasing diagrams

development closed critical pairs

discrimination pairs

joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs parallel critical pairs

reduction method

redundant rules rule labeling simultaneous critical pairs source labeling

strongly closed critical pairs

tree automata

weak orthogonality

Z property

· · ·

Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort

IWC 2025 2 September 2025 5. Conclusion 25/27



Confluence Methods for LCTRSs IWC 2025

critical pair closing systems decreasing diagrams

development closed critical pairs

discrimination pairs

joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs parallel critical pairs reduction method

redundant rules

rule labeling simultaneous critical pairs source labeling

strongly closed critical pairs

tree automata

weak orthogonality

Z property

· · ·

Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort

IWC 2025 2 September 2025 5. Conclusion 25/27



Final Remarks

▶ redundant rules technique is implemented in crest ( Jonas Schöpf )

▶ crest participates in LCTRS category of Confluence Competition 2025 (later today)

▶ Jonas will defend his PhD thesis later this year

Future Work

▶ implementation of reduction method in crest

▶ in reduction method can C ⊑ R be weakened to combination of→∗
C ⊆ →∗

R and C ≃ R ?

IWC 2025 2 September 2025 5. Conclusion 26/27



Final Remarks

▶ redundant rules technique is implemented in crest ( Jonas Schöpf )

▶ crest participates in LCTRS category of Confluence Competition 2025 (later today)

▶ Jonas will defend his PhD thesis later this year

Future Work

▶ implementation of reduction method in crest

▶ in reduction method can C ⊑ R be weakened to combination of→∗
C ⊆ →∗

R and C ≃ R ?

IWC 2025 2 September 2025 5. Conclusion 26/27



Final Remarks

▶ redundant rules technique is implemented in crest ( Jonas Schöpf )

▶ crest participates in LCTRS category of Confluence Competition 2025 (later today)

▶ Jonas will defend his PhD thesis later this year

Future Work

▶ implementation of reduction method in crest

▶ in reduction method can C ⊑ R be weakened to combination of→∗
C ⊆ →∗

R and C ≃ R ?

IWC 2025 2 September 2025 5. Conclusion 26/27



Final Remarks

▶ redundant rules technique is implemented in crest ( Jonas Schöpf )

▶ crest participates in LCTRS category of Confluence Competition 2025 (later today)

▶ Jonas will defend his PhD thesis later this year

Future Work

▶ implementation of reduction method in crest

▶ in reduction method can C ⊑ R be weakened to combination of→∗
C ⊆ →∗

R and C ≃ R ?

IWC 2025 2 September 2025 5. Conclusion 26/27



Final Remarks

▶ redundant rules technique is implemented in crest ( Jonas Schöpf )

▶ crest participates in LCTRS category of Confluence Competition 2025 (later today)

▶ Jonas will defend his PhD thesis later this year

Future Work

▶ implementation of reduction method in crest

▶ in reduction method can C ⊑ R be weakened to combination of→∗
C ⊆ →∗

R and C ≃ R ?

IWC 2025 2 September 2025 5. Conclusion 26/27



�

���
���

�

������������������

������������
�����������

���������������

�

��������

�
��

����
�� �����

�

�

�������

�������

�

����������
������������

IWC 2025 2 September 2025 5. Conclusion 27/27


	Logically Constrained Rewrite Systems
	Confluence Results
	Redundant Rules
	Reduction Method
	Conclusion

