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compute
n∑

i=1

i for natural number n

Example

▶ term rewrite system (TRS)

sum(0) → 0 add(0, y) → y

sum(s(x)) → add(s(x), sum(x)) add(s(x), y) → s(add(x, y))

▶ rewriting

sum(s(s(s(0))) → add(s(s(s(0))), sum(s(s(0)))) → s(add(s(s(0)), sum(s(s(0)))))

→ · · · → s(s(s(s(s(s(0))))))

▶ logically constrained term rewrite system (LCTRS)

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ rewriting

sum(3) → 3 + sum(3− 1)

→ 3 + sum(2) → 3 + (2 + sum(2− 1)) → · · · → 6
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Definitions

▶ many–sorted signature F = Fte ⊎ Fth and non–empty set of constant symbols Val ⊆ Fth

▶ logical term is element of T (Fth,V)
▶ constraint is logical term of sort Bool

▶ logical ground terms are mapped to values: [[f(t1, . . . , tn)]] = fJ ([[t1 ]], . . . , [[tn ]])

▶ constrained rewrite rule is triple ℓ → r [φ ] with constraint φ and terms ℓ, r ∈ T (F ,V) of

same sort such that root(ℓ) ∈ Fte \ Fth

▶ LCTRS R is set of constrained rewrite rules

▶ calculation rule is f(x1, . . . , xn) → y [ y = f(x1, . . . , xn) ] with f ∈ Fth \ Val and fresh y

▶ Rca is set of calculation rules and Rrc = R ∪ Rca
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Example

▶ LCTRS

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ two sorts Int and Bool with Val Int = Z and ValBool = {⊥, ⊤}

▶ signature Fth +, − : Int× Int→ Int ⩽, > : Int× Int→ Bool . . . , −1, 0, 1, · · · : Int

▶ signature Fte sum : Int→ Int

Definition

substitution σ respects constrained rewrite rule ρ : ℓ → r [φ ] if

1 Dom(σ) ⊆ Var(ρ)

2 σ(x) ∈ Val for all x ∈ LVar(ρ) = Var(φ) ∪ (Var(r ) \ Var(ℓ)) (logical variables)

3 [[φσ ]] = ⊤

notation: σ ⊨ ρ
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Definition

s →R t if there exist

1 position p in s

2 rewrite rule ℓ → r [φ ] in Rrc

3 substitution σ

such that s|p = ℓσ, t = s[rσ ]p and σ ⊨ ℓ → r [φ ]

Example

▶ LCTRS R = {sum(x) → 0 [ x ⩽ 0 ], sum(x) → x+ sum(x− 1) [ x > 0 ]}
▶ rewrite step sum(3− 1) →R sum(2)

1 position 1

2 calculation rule x1 − x2 → y [ y = x1 − x2 ]

3 substitution σ = {x1 7→ 3, x2 7→ 1, y 7→ 2}
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Definitions

▶ overlap of LCTRS R is triple ⟨ρ1,p, ρ2⟩ such that

1 ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ] are variable–disjoint variants of rules in Rrc

2 p ∈ PosF (ℓ2 )

3 ℓ1 and ℓ2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1 ) ∪ LVar(ρ2 )

4 φ1σ ∧ φ2σ is satisfiable

5 if p = ϵ then ρ1 and ρ2 are not variants or Var(r1 ) ⊈ Var(ℓ1 )

▶ ℓ2σ [r1σ ]p ≈ r2σ [φ1σ ∧ φ2σ ∧ ψσ ] is induced constrained critical pair

▶ EVar(ℓ → r [φ ]) = Var(r ) \ (Var(ℓ) ∪ Var(φ)) is set of extra variables

▶ ψ = ECρ1 ∧ ECρ2 where ECρ with ρ : ℓ → r [φ ] abbreviates
∧
{x = x | x ∈ EVar(ρ)}

▶ substitution σ respects constraint φ (σ ⊨ φ) if σ(x) ∈ Val for x ∈ Var(φ) and [[φσ ]] = ⊤
▶ constrained equation s ≈ t [φ ] is trivial if sσ = tσ for every substitution σ with σ ⊨ φ
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Confluence Methods for TRSs

CADE 2023

critical pair closing systems decreasing diagrams development closed critical pairs

discrimination pairs

joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs parallel critical pairs reduction method

redundant rules rule labeling simultaneous critical pairs source labeling

strongly closed critical pairs tree automata weak orthogonality Z property · · ·

Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort
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Theorem

(local) confluence is decidable for finite terminating TRSs

Theorem (IJCAR 2024)

(local) confluence of terminating LCTRSs is undecidable, even if underlying theory is decidable

Definition (Transformation)

LCTRS R is transformed into TRS R consisting of

ℓτ → r τ

for all ρ : ℓ → r [φ ] ∈ Rrc and substitutions τ with τ ⊨ ρ and Dom(τ) = LVar(ρ)

Corollary

LCTRS R is confluent ⇐⇒ TRS R is confluent
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Remark

advanced confluence criteria require rewriting of constrained terms and equations

Definitions

▶ constraint φ is valid if [[φγ ]] = ⊤ for all substitutions γ such that γ(x) ∈ Val for x ∈ Var(φ)

▶ constrained terms s [φ ] and t [ψ ] are equivalent (s [φ ] ∼ t [ψ ]) if for every substitution

γ ⊨ φ with Dom(σ) = Var(φ) there is substitution δ ⊨ ψ with Dom(δ) = Var(ψ ) such that

sγ = tδ, and vice versa

▶ s [φ ] →R t [φ ] if s|p = ℓσ and t = s[rσ ]p for some position p, constrained rewrite rule

ℓ → r [ψ ] in Rrc and substitution σ such that σ(x) ∈ Val ∪ Var(φ) for all x ∈ LVar(ρ),

φ is satisfiable and φ⇒ ψσ is valid

▶ rewrite relation ∼−→R on constrained terms is defined as ∼ · →R · ∼
▶ LCTRSs R and S share same theory (R ≃ S ) if they differ only in Fte and their respective

rule sets
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Definition

rewrite rule ℓ → r ∈ R is redundant if ℓ →∗
R\{ℓ→ r} r

Theorem (Nagele, Felgenhauer, Middeldorp 2015)

if ℓ → r ∈ R is redundant then R is confluent ⇐⇒ R \ {ℓ → r} is confluent

Example

▶ TRS R = {f(f(x)) → x, f(x) → f(f(x))} has two non–trivial critical pairs 409

f(f(f(x))) ≈ x x ≈ f(f(f(x)))

which are joinable f(f(f(x))) → f(x) → f(f(x)) → x but not by development step

▶ adding rule f(x) → x results in four new critical pairs

▶ resulting TRS is development–closed
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Definitions

▶ constrained rewrite rule ρ : ℓ → r [φ ] ∈ R is redundant if

ℓ ≈ r [φ ∧ ECρ ] ∼−→∗
R\{ρ},⩾1 ℓ′ ≈ r′ [ψ ]

for some trivial ℓ′ ≈ r′ [ψ ]

▶ set of constrained rules S is redundant in R if all its rules are redundant in R

Example

constrained rewrite rule ρ : f(x+ x)→ f(z) [ z = 2 · x ] ∈ R is redundant:

f(x+ x) ≈ f(z) [ z = 2 · x ] ∼−→R\{ρ},⩾1 f(z′) ≈ f(z) [ z = 2 · x ∧ z′ = x+ x ]

Theorem

if set of constrained rules S is redundant in LCTRS R and R ≃ S then

R is confluent ⇐⇒ R ∪ S is confluent
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Theorem

if for every rule ρ : ℓ → r [φ ] ∈ S

ℓ ≈ r [φ ∧ ECρ ] ∼←→∗
R\{ρ},> ϵ ℓ′ ≈ r′ [ψ ]

for some trivial ℓ′ ≈ r′ [ψ ] and R ≃ S then

R is confluent =⇒ R ∪ S is confluent

Example

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]
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Example (cont’d)

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

conversion of β

f(x, y) ≈ d(x, y) [φ ] ∼←→R\{β},> ϵ x+ y ≈ d(x, y) [φ ]

∼←→R\{β},> ϵ x+ y ≈ y+ x [φ ]
∼←→R\{β},> ϵ z ≈ y+ x [φ ∧ z = x+ y ]
∼←→R\{β},> ϵ z ≈ z′ [φ ∧ z = x+ y ∧ z′ = y+ x ]

LCTRS R \ {β} is orthogonal =⇒ R confluent
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Implementation Heuristics

1 for s ≈ t [φ ] ∈ CCP(R) if

s ≈ t [φ ] ◦−→2
R,⩾1 · ◦−→2

R,⩾2 u ≈ v [ψ ]

for trivial u ≈ v [ψ ] then add s → u [φ ] and t → v [φ ] to R

2 for ρ : ℓ → r [φ ] ∈ R if

r [φ ∧ ECρ ] ◦−→2
R r′ [ψ ]

then add ℓ → r′ [φ ] to R

3 remove ρ : ℓ → r [φ ] from R if

ℓ ≈ r [φ ∧ ECρ ] ◦−→2
R\{ρ},⩾1 · ◦−→2

R\{ρ},⩾2 u ≈ v [ψ ]

for trivial u ≈ v [ψ ]
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Definitions

▶ PCP(R) denotes set of parallel critical pairs of TRS R

▶ TRS R is convertible by TRS C if C ⊆ R and s↔∗
C t for all s ≈ t ∈ PCP(R)

Theorem (Shintani & Hirokawa 2024)

left–linear TRS R is confluent if R is convertible by confluent TRS C

Definitions

▶ LCTRS C is subsystem of LCTRS R (C ⊑ R) if C ≃ R and C ⊆ R

▶ constrained parallel critical pair s ≈ t [φ ] is convertible by LCTRS C if

s ≈ t [φ ] ∼←→∗
C,> ϵ s′ ≈ t′ [ψ ]

for some trivial s′ ≈ t′ [ψ ]

▶ LCTRS R is convertible by C if C ⊑ R and all constrained parallel critical pairs CPCP(R) of

R are convertible by C
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Theorem

left–linear LCTRS R is confluent if R is convertible by confluent LCTRS C

Example

LCTRS R over theory Ints

f(x, y)
α−→ x+ y [ x > 0 ] f(x, y)

β−→ d(x, y) [ x = 2 · y ∧ y > 0 ]

f(x, y)
γ−→ f(y, x) [ x ⩽ 0 ] d(x, y)

δ−→ y+ x

has two parallel constrained critical pairs with constraint φ = (x = 2 · y ∧ y > 0)

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] d(x, y) ≈ x+ y [φ ∧ x > 0 ]

both are convertible by C = {δ}

x+ y ≈ d(x, y) [ x > 0 ∧ φ ] →C x+ y ≈ y+ x [ x > 0 ∧ φ ]

→∗
C z ≈ z′ [ x > 0 ∧ φ ∧ z = x+ y ∧ z′ = y+ x ]
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Notation

R↾C = {ℓ→ r ∈ R | Fun(ℓ) ⊆ Fun(C )} for TRSs R and C

Theorem (Shintani & Hirokawa 2024)

if R↾C ⊆ →∗
C ⊆ →∗

R and R is confluent then C is confluent

Definitions

▶ Fun te(s) = Fun(s) \ Fth

▶ R↾C = {ℓ → r [φ ] ∈ R | Fun te(ℓ) ⊆ Fun te(C)} for LCTRSs R and C
▶ R↾C is simulated by C if every ρ : ℓ → r [φ ] ∈ R↾C satisfies

ℓ ≈ r [φ ∧ ECρ ] ∼−→∗
C,> ϵ u ≈ v [ψ ]

for some trivial u ≈ v [ψ ]
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Confluence Methods for LCTRSs TACAS 2025

critical pair closing systems decreasing diagrams

development closed critical pairs

discrimination pairs

joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs parallel critical pairs

reduction method

redundant rules rule labeling simultaneous critical pairs source labeling

strongly closed critical pairs

tree automata

weak orthogonality

Z property

· · ·

Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort
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Final Remarks

▶ redundant rules technique is implemented in crest ( Jonas Schöpf )

▶ crest participates in LCTRS category of Confluence Competition 2025 (later today)

▶ Jonas will defend his PhD thesis later this year

Future Work

▶ implementation of reduction method in crest

▶ in reduction method can C ⊑ R be weakened to combination of→∗
C ⊆ →∗

R and C ≃ R ?
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