M universitat
™ innsbruck

supported by FLUF project 15943-N

Improving Confluence Analysis for LCTRSs

Jonas Schopf and Aart Middeldorp

University of Innsbruck m

Outline

1. Logically Constrained Rewrite Systems

= ?Jnr}i\s/g;lsjictet IWC 2025 2 September 2025 ey iy 1. Logically Constrained Rewrite Systems 227

n
compute Z i for natural number n
=1

= ?Jnr}i\s/g;lsjictet IWC 2025 2 September 2025 ey iy 1. Logically Constrained Rewrite Systems 327

n
compute Z i for natural number n
i=1

» term rewrite system (TRS)

sum(0) — 0 add(0,y) — y
sum(s(x)) — add(s(x),sum(x)) add(s(x),y) — s(add(x,y))
AM_
B universitdt |wC 2025 2 September 2025 oV re 1. Logically Constrained Rewrite Systems 327

= innsbruck

n
compute Z i for natural number n
i=1

» term rewrite system (TRS)

sum(0) — 0 add(0,y) — y
sum(s(x)) — add(s(x),sum(x)) add(s(x),y) — s(add(x,y))
» rewriting
sum(s(s(s(0))) — add(s(s(s(0))),sum(s(s(0)))) — s(add(s(s(0)),sum(s(s(0)))))
— - = s(s(s(s(s(s(0))))))

= :Jnnnl\s/gll:lsj'gﬁt IWC 2025 2 September 2025 el 1. Logically Constrained Rewrite Systems 327

n

compute Z i for natural number n
i=1

» term rewrite system (TRS)
sum(0) — 0 add(0,y) — y
sum(s(x)) — add(s(x),sum(x)) add(s(x),y) — s(add(x,y))

» rewriting
sum(s(s(s(0))) — add(s(s(s(0))),sum(s(s(0)))) — s(add(s(s(0)),sum(s(s(0)))))

= - = s(s(s(s(s(s(0))))))
» logically constrained term rewrite system (LCTRS)

sum(x) - 0 [x < 0] sum(x) — x+sum(x —1) [x > 0]

= :Jnnnl\s/glflsj'gﬁt IWC 2025 2 September 2025 el 1. Logically Constrained Rewrite Systems 327

n
compute Z i for natural number n
i=1

» term rewrite system (TRS)

sum(0) — 0 add(0,y) — y
sum(s(x)) — add(s(x),sum(x)) add(s(x),y) — s(add(x,y))
» rewriting
sum(s(s(s(0))) — add(s(s(s(0))),sum(s(s(0)))) — s(add(s(s(0)),sum(s(s(0)))))
— -+ = s(s(s(s(s(s(0))))))
» logically constrained term rewrite system (LCTRS)
sum(x) - 0 [x < 0] sum(x) — x+sum(x—1) [x > 0]
» rewriting
sum(3) = 3+sum(3—1)

= :Jnnnl\s/gll:lsj'gﬁt IWC 2025 2 September 2025 el 1. Logically Constrained Rewrite Systems 327

n
compute Z i for natural number n
i=1

» term rewrite system (TRS)

sum(0) — 0 add(0,y) — y
sum(s(x)) — add(s(x),sum(x)) add(s(x),y) — s(add(x,y))
» rewriting
sum(s(s(s(0))) — add(s(s(s(0))),sum(s(s(0)))) — s(add(s(s(0)),sum(s(s(0)))))
— - = s(s(s(s(s(s(0))))))
» logically constrained term rewrite system (LCTRS)
sum(x) - 0 [x < 0] sum(x) — x+sum(x—1) [x > 0]
» rewriting
sum(3) — 3+ sum(3 —-1) — 3 +sum(2)

= :Jnnnl\s/gll:lsj'gﬁt IWC 2025 2 September 2025 el 1. Logically Constrained Rewrite Systems 327

n
compute Z i for natural number n
i=1

» term rewrite system (TRS)

sum(0) — 0 add(0,y) — y
sum(s(x)) — add(s(x),sum(x)) add(s(x),y) — s(add(x,y))
» rewriting
sum(s(s(s(0))) — add(s(s(s(0))),sum(s(s(0)))) — s(add(s(s(0)),sum(s(s(0)))))
— - = s(s(s(s(s(s(0))))))
» logically constrained term rewrite system (LCTRS)
sum(x) - 0 [x < 0] sum(x) — x+sum(x—1) [x > 0]
» rewriting
sum(3) - 3+sum(3—-1) - 3+sum(2) — 3+ (2+sum(2—1))

= :Jnnnl\s/gll:lsj'gﬁt IWC 2025 2 September 2025 el 1. Logically Constrained Rewrite Systems 327

n
compute Z i for natural number n
i=1

» term rewrite system (TRS)

sum(0) — 0 add(0,y) — y
sum(s(x)) — add(s(x),sum(x)) add(s(x),y) — s(add(x,y))
» rewriting
sum(s(s(s(0))) — add(s(s(s(0))), sum(s(s(0)))) — s(add(s(s(0)), sum(s(s(0)))))
= - = s(s(s(s(s(s(0))))))
» logically constrained term rewrite system (LCTRS)
sum(x) - 0 [x < 0] sum(x) — x+sum(x —1) [x > 0]

» rewriting
sum(3) - 3+sum(3—-1) - 3+sum(2) -+ 3+ (2+sum(2—-1)) - --- — 6
AM_

= :Jnnnl\s/gll:lsj'gﬁt IWC 2025 2 September 2025 el 1. Logically Constrained Rewrite Systems 327

» many-sorted signature F = Fi. W F, and non—empty set of constant symbols Val C Fiy,

u mi;/g;aictft IWC 2025 2 September 2025 o re 1. Logically Constrained Rewrite Systems 4127

» many-sorted signature F = Fi. W F, and non—empty set of constant symbols Val C Fiy,

» logical term is element of 7 (Fw, V)

u ﬁq"rj;/g;aictft IWC 2025 2 September 2025 oo e 1. Logically Constrained Rewrite Systems 4127

» many-sorted signature F = Fi. W F, and non—empty set of constant symbols Val C Fiy,

» logical term is element of 7 (Fw, V)

» constraint is logical term of sort Bool

u ﬁq"rj;/g;aictft IWC 2025 2 September 2025 oo e 1. Logically Constrained Rewrite Systems 4127

» many-sorted signature F = Fi. W F, and non—empty set of constant symbols Val C Fiy,

» logical term is element of 7 (Fw, V)
» constraint is logical term of sort Bool

» logical ground terms are mapped to values: [f(ti, ..., t))] = f7([t.], ..., [ta])

u i‘;”é:ﬁ{ﬁiéft IWC 2025 2 September 2025 o re 1. Logically Constrained Rewrite Systems 4127

» many-sorted signature F = Fi. W F, and non—empty set of constant symbols Val C Fiy,

» logical term is element of 7 (Fih, V)
» constraint is logical term of sort Bool
» logical ground terms are mapped to values: [f(ti, ..., t))] = f7([t.], ..., [ta])

» constrained rewrite rule is triple ¢ — r [¢] with constraint ¢ and terms ¢, r € T(F,V) of
same sort such that root(¢) € Fie \ Ftn

u i‘;”é:é{ﬁiéft IWC 2025 2 September 2025 o re 1. Logically Constrained Rewrite Systems 4127

Definitions

» many-sorted signature F = Fi. W F, and non—empty set of constant symbols Val C Fiy,
» logical term is element of 7 (Fih, V)

» constraint is logical term of sort Bool

» logical ground terms are mapped to values: [f(ti, ..., t))] = f7([t.], ..., [ta])

» constrained rewrite rule is triple £ — r [¢] with constraint ¢ and terms ¢, r € T(F,V) of
same sort such that root(¢) € Fie \ Ftn

» LCTRS R is set of constrained rewrite rules

u i‘;”é:é{ﬁiéft IWC 2025 2 September 2025 o re 1. Logically Constrained Rewrite Systems 4127

Definitions

» many-sorted signature F = Fi. W F, and non—empty set of constant symbols Val C Fiy,
» logical term is element of 7 (Fih, V)

» constraint is logical term of sort Bool

» logical ground terms are mapped to values: [f(ti, ..., t))] = f7([t.], ..., [ta])

» constrained rewrite rule is triple £ — r [¢] with constraint ¢ and terms ¢, r € T(F,V) of
same sort such that root(¢) € Fie \ Ftn

» LCTRS R is set of constrained rewrite rules

» calculation rule is f(x1, ..., Xn) = ¥ [y = f(x1, ..., Xp)] with f € F, \ Val and fresh y

u i‘fﬂi;’g;ﬁictft IWC 2025 2 September 2025 o re 1. Logically Constrained Rewrite Systems 4127

Definitions

» many-sorted signature F = Fi. W F, and non—empty set of constant symbols Val C Fiy,
» logical term is element of 7 (Fih, V)

» constraint is logical term of sort Bool

» logical ground terms are mapped to values: [f(ti, ..., t))] = f7([t.], ..., [ta])

» constrained rewrite rule is triple £ — r [¢] with constraint ¢ and terms ¢, r € T(F,V) of
same sort such that root(¢) € Fie \ Ftn

» LCTRS R is set of constrained rewrite rules
» calculation rule is f(x1, ..., X5) = ¥ [y = f(x1, ..., X5)] with f € Fy \ Val and fresh y

» Rcs is set of calculation rules and R;c = R U Rea

u i‘f{‘,{;’g;ﬁictft IWC 2025 2 September 2025 oo e 1. Logically Constrained Rewrite Systems 4127

» LCTRS

sum(x) - 0 [x < 0] sum(x) — x+sum(x —1) [x > 0]

» two sorts Int and Bool with Val,x = Z and Valgee = {1, T}

= :Jnnn“s/gF\sjlzl?t IWC 2025 2 September 2025 el 1. Logically Constrained Rewrite Systems 5/27

» LCTRS

sum(x) - 0 [x < 0] sum(x) — x+sum(x —1) [x > 0]

» two sorts Int and Bool with Val,x = Z and Valgee = {1, T}

» signature Fi 4+, —:Int x Int — Int <, > :Int x Int — Bool oy, —1,0,1, -1 Int
AM_
B universitdt |wC 2025 2 September 2025 oo gTre 1. Logically Constrained Rewrite Systems 5127

= innsbruck

» LCTRS
sum(x) - 0 [x < 0] sum(x) — x+sum(x —1) [x > 0]

» two sorts Int and Bool with Val,x = Z and Valgee = {1, T}

» signature Fi 4+, —:Int x Int — Int <, > :Int x Int — Bool oy, —1,0,1, -1 Int
» signature Fie sum : Int — Int
AM_
B universitdt |wC 2025 2 September 2025 oo gTre 1. Logically Constrained Rewrite Systems 5127

= innsbruck

LCTRS
sum(x) - 0 [x < 0] sum(x) — x+sum(x—1) [x > 0]

two sorts Int and Bool with Valj,e = Z and Valgeo = { L, T}
signature Fi +, — :Int X Int — Int <, > : Int x Int — Bool ..., —1,0,1,---:Int

signature Fie sum : Int — Int

substitution o respects constrained rewrite rule p: ¢ — r [¢] if

@® Dom(c) C Var(p)
®@ o(x) € Val forall x € LVar(p) = Var(¢) U (Var(r) \ Var(¥)) (logical variables)
® [eol=T

u m}igg;aictet IWC 2025 2 September 2025 o re 1. Logically Constrained Rewrite Systems 5/27

LCTRS
sum(x) - 0 [x < 0] sum(x) — x+sum(x—1) [x > 0]
two sorts Int and Bool with Valj,e = Z and Valgeo = { L, T}
signature Fi +, — :Int X Int — Int <, > : Int x Int — Bool ..., —1,0,1,---:Int

signature Fie sum : Int — Int

substitution o respects constrained rewrite rule p: ¢ — r [¢] if

@® Dom(c) C Var(p)

@ o(x) € Val forall x € LVar(p) = Var(¢) U (Var(r) \ Var(¥)) (logical variables)
® [eol=T

notation: o F p

u m}igg;aictet IWC 2025 2 September 2025 o re 1. Logically Constrained Rewrite Systems 5/27

s —p t if there exist

@ position p in's
@ rewriterule £ — r [¢] in R
® substitution o

such that s|, = lo, t = s[ro], and 0 E £ — r [¢]

u i‘;”é:g{ﬁiéft IWC 2025 2 September 2025 o 1. Logically Constrained Rewrite Systems 6/27

s —p t if there exist

@ position p in's
@ rewriterule £ — r [¢] in Ry
® substitution o

such that s|, = lo, t = s[ro], and 0 E £ — r [¢]

u i‘;”é:g{ﬁiéft IWC 2025 2 September 2025 o 1. Logically Constrained Rewrite Systems 6/27

s —p t if there exist

@ position p in's
@ rewriterule £ — r [¢] in R
® substitution o

such that s|, = lo, t = s[ro], and 0 E £ — r [¢]

LCTRS R = {sum(x) — 0 [x < 0], sum(x) — x+sum(x —1) [x > 0]}

rewrite step sum(3 — 1) —x sum(2)

u m}igg;aictet IWC 2025 2 September 2025 o re 1. Logically Constrained Rewrite Systems 6/27

s —p t if there exist

@ position p in's
@ rewriterule £ — r [¢] in R
® substitution o

such that s|, = lo, t = s[ro], and 0 E £ — r [¢]

LCTRS R = {sum(x) — 0 [x < 0], sum(x) — x+sum(x —1) [x > 0]}
rewrite step sum(3 — 1) —x sum(2)

position 1

calculationrule x3 —x2 =y [y =x1—Xx2]

substitution oc={x1—=3,x2—~1,y—2}

u m}igg;aictet IWC 2025 2 September 2025 oo re 1. Logically Constrained Rewrite Systems 6/27

» overlap of LCTRS R is triple {p1,p, p2) such that

® p1:61 —n [p1] and py: b — r; [@2] are variable—disjoint variants of rules in R
@ pe 'POS]:(éz)

u .univgrsitet IWC 2025 2 September 2025 o e 1. Logically Constrained Rewrite Systems 727
innsbrucl

» overlap of LCTRS R is triple {p1,p, p2) such that

® p1:61 —n [p1] and py: b — r; [@2] are variable—disjoint variants of rules in R
@ pe 'POS]:(éz)
® ¢ and (|, unify with mgu o such that o(x) € ValUV forall x € LVar(p1) U LVar(pz2)

u .univgrsitet IWC 2025 2 September 2025 o e 1. Logically Constrained Rewrite Systems 727
innsbrucl

Definitions

» overlap of LCTRS R is triple {p1,p, p2) such that
® p1:61 —n [p1] and py: b — r; [@2] are variable—disjoint variants of rules in R
@ pe 'POS]:(éz)
® ¢ and (|, unify with mgu o such that o(x) € ValUV forall x € LVar(p1) U LVar(pz2)
@ @10 N py0 is satisfiable

u .univgrsitet IWC 2025 2 September 2025 o e 1. Logically Constrained Rewrite Systems 727
innsbrucl

Definitions

» overlap of LCTRS R is triple {p1,p, p2) such that
® p1:61 —n [p1] and py: b — r; [@2] are variable—disjoint variants of rules in R
p € Posz(4>)
¢, and /3|, unify with mgu o such that o(x) € ValUV forall x € LVar(p1) U LVar(pz2)

w10 N @0 is satisfiable

@ ® @ ®

if p = € then p; and p, are not variants or Var(r;) ¢ Var(/y)

u mi!ﬁ{iiéﬁ" IWC 2025 2 September 2025 ol e 1. Logically Constrained Rewrite Systems 7127

» overlap of LCTRS R is triple {p1,p, p2) such that

®
®
®
@
®

p1: 0y — 1 [p1] and py: b — ry [¢2] are variable-disjoint variants of rules in R

p € Posz(4>)

¢, and /3|, unify with mgu o such that o(x) € ValUV forall x € LVar(p1) U LVar(pz2)
w10 N @0 is satisfiable

if p = € then p; and p, are not variants or Var(r;) ¢ Var(/y)

» lro[rnolp = o [p10 A g0 A o] isinduced constrained critical pair

u .uni;/g;aictet IWC 2025 2 September 2025 ot iy 1. Logically Constrained Rewrite Systems 7/27

inn:

» overlap of LCTRS R is triple {p1,p, p2) such that

®
®
®
@
®

p1: 0y — 1 [p1] and py: b — ry [¢2] are variable-disjoint variants of rules in R

p € Posz(4>)

¢, and /3|, unify with mgu o such that o(x) € ValUV forall x € LVar(p1) U LVar(pz2)
w10 N @0 is satisfiable

if p = € then p; and p, are not variants or Var(r;) ¢ Var(/y)

» lro[rnolp = o [p10 A g0 Atpo] isinduced constrained critical pair
» EVar(l — r [¢]) = Var(r)\ (Var(¢) U Var(y)) is set of extra variables

u .uni;/gl[aictet IWC 2025 2 September 2025 ot iy 1. Logically Constrained Rewrite Systems 7/27

inn:

» overlap of LCTRS R is triple {p1,p, p2) such that

®
®
®
@
®

p1: 0y — 1 [p1] and py: b — ry [¢2] are variable-disjoint variants of rules in R

p € Posz(4>)

¢, and /3|, unify with mgu o such that o(x) € ValUV forall x € LVar(p1) U LVar(pz2)
w10 N @0 is satisfiable

if p = € then p; and p, are not variants or Var(r;) ¢ Var(/y)

» lro[rnolp = o [p10 A g0 Atpo] isinduced constrained critical pair
» EVar(l — r [¢]) = Var(r)\ (Var(¢) U Var(y)) is set of extra variables
» = EC,, N EC,, where EC, with p: £ — r [¢] abbreviates A {x = x| x € EVar(p)}

u .uni;/gl[aictet IWC 2025 2 September 2025 ot iy 1. Logically Constrained Rewrite Systems 7/27

inn:

Definitions

» overlap of LCTRS R is triple {p1,p, p2) such that
® p1:61 —n [p1] and py: b — r; [@2] are variable—disjoint variants of rules in R
@ p e Posx(lz)
® ¢ and (|, unify with mgu o such that o(x) € ValUV forall x € LVar(p1) U LVar(pz2)
@ @10 N py0 is satisfiable
® if p =€ then p; and p, are not variants or Var(ry) ¢ Var(/1)

v

lo[nolp, = o [pi10 A w0 A o] isinduced constrained critical pair

EVar(t —r [¢]) = Var(r)\ (Var(¢) U Var(y)) is set of extra variables

v = EC, NEC,, where EC, with p: £ — r [¢] abbreviates A {x = x| x € EVar(p)}
substitution o respects constraint ¢ (o F ¢) if o(x) € Val for x € Var(¢) and o] =T

v

v

v

u mi;/gl[aictft IWC 2025 2 September 2025 ol e 1. Logically Constrained Rewrite Systems 7127

Definitions

» overlap of LCTRS R is triple {p1,p, p2) such that
® p1:61 —n [p1] and py: b — r; [@2] are variable—disjoint variants of rules in R
@ p e Posx(lz)
® ¢ and (|, unify with mgu o such that o(x) € ValUV forall x € LVar(p1) U LVar(pz2)
@ @10 N py0 is satisfiable
® if p =€ then p; and p, are not variants or Var(ry) ¢ Var(/1)

v

lo[nolp, = o [pi10 A w0 A o] isinduced constrained critical pair

EVar(t —r [¢]) = Var(r)\ (Var(¢) U Var(y)) is set of extra variables

v = EC, NEC,, where EC, with p: £ — r [¢] abbreviates A {x = x| x € EVar(p)}
substitution o respects constraint ¢ (o F ¢) if o(x) € Val for x € Var(¢) and [po] =T

v

v

v

» constrained equation s &~ t [¢] is trivial if so = to for every substitution o with o F ¢

u ﬁr}]i;/gl[aictft IWC 2025 2 September 2025 ol e 1. Logically Constrained Rewrite Systems 7127

Outline

2. Confluence Results

W universitat 2. Confluence Results 8/27
Wuniversitst 1w 2025 2 September 2025 el onflu u /

Confluence Methods for TRSs

u m}igg;aictet IWC 2025 2 September 2025 o re 2. Confluence Results 927

Confluence Methods for TRSs
critical pair closing systems decreasing diagrams development closed critical pairs

Lvonay s cical pars 3 e automata R veak ortogoaity R Z provers I 3

M universitat
M universitit |wc 2025 2 September 2025 o> 2. Confluence Results 927

Confluence Methods for TRSs

Kop & Nishida (FroCoS 2013)

common analysis techniques for term rewriting extend to LCTRSs without much effort

L] mi;/g;aictet IWC 2025 2 September 2025 o2 2. Confluence Results 9/27

(local) confluence is decidable for finite terminating TRSs

M universitat
W universitit |wC 2025 2 September 2025 o> 2. Confluence Results 10/27

Theorem

(local) confluence is decidable for finite terminating TRSs

Theorem (1JCAR 2024)

(local) confluence of terminating LCTRSs is undecidable, even if underlying theory is decidable

M universitat
W universitit |wc 2025 2 September 2025 o> 2. Confluence Results 10/27

(local) confluence is decidable for finite terminating TRSs

Theorem (1JCAR 2024)

(local) confluence of terminating LCTRSs is undecidable, even if underlying theory is decidable

Definition (Transformation)

LCTRS R is transformed into TRS R consisting of

bt — rT

forall p: £ — r [¢] € Ric and substitutions 7 with 7 F p and Dom(7) = LVar(p)

M universitat
W universitit |wc 2025 2 September 2025 o> 2. Confluence Results 10/27

Theorem

(local) confluence is decidable for finite terminating TRSs

Theorem (1JCAR 2024)

(local) confluence of terminating LCTRSs is undecidable, even if underlying theory is decidable

Definition (Transformation)

LCTRS R is transformed into TRS R consisting of

bt — rT

forall p: £ — r [¢] € Ric and substitutions 7 with 7 F p and Dom(7) = LVar(p)

Corollary

LCTRS R is confluent <= TRS R is confluent

M universitat
M universitit |wc 2025 2 September 2025 o> 2. Confluence Results 10/27

advanced confluence criteria require rewriting of constrained terms and equations

u ﬁw"riggﬁictlét IWC 2025 2 September 2025 o re 2. Confluence Results 11/27

advanced confluence criteria require rewriting of constrained terms and equations

Definitions

» constraint ¢ is valid if [oy] = T for all substitutions « such that v(x) € Val for x € Var(y)

u m}igg;aictet IWC 2025 2 September 2025 o re 2. Confluence Results 11/27

advanced confluence criteria require rewriting of constrained terms and equations

Definitions

» constraint ¢ is valid if [oy] = T for all substitutions « such that v(x) € Val for x € Var(y)

» constrained terms s [¢] and t [¢] are equivalent (s [¢] ~ t[v]) if for every substitution
v E ¢ with Dom(c) = Var(g) there is substitution § F ¢ with Dom(d) = Var(v) such that
sy = td, and vice versa

u mi;/g;aictft IWC 2025 2 September 2025 o re 2. Confluence Results 11/27

advanced confluence criteria require rewriting of constrained terms and equations

Definitions
» constraint ¢ is valid if [oy] = T for all substitutions « such that v(x) € Val for x € Var(y)
» constrained terms s [¢] and t [¢] are equivalent (s [¢] ~ t [«]) if for every substitution

v E ¢ with Dom(c) = Var(g) there is substitution § F ¢ with Dom(d) = Var(v) such that
sy = td, and vice versa

» s[p] =r t[e] if s|p = Lo and t = s[ro], for some position p, constrained rewrite rule
¢ — r [¢] in R and substitution o such that o(x) € Val U Var(y) for all x € LVar(p),
@ is satisfiable and ¢ = o is valid

u ﬁq"rj;/g;aictft IWC 2025 2 September 2025 o re 2. Confluence Results 11/27

advanced confluence criteria require rewriting of constrained terms and equations

Definitions
» constraint ¢ is valid if [oy] = T for all substitutions « such that v(x) € Val for x € Var(y)

» constrained terms s [¢] and t [¢] are equivalent (s [¢] ~ t [«]) if for every substitution
v E ¢ with Dom(c) = Var(g) there is substitution § F ¢ with Dom(d) = Var(v) such that
sy = td, and vice versa

v

sle] == t[y] if s|p = ¢o and t = s[ro], for some position p, constrained rewrite rule
¢ — r [¢] in R and substitution o such that o(x) € Val U Var(y) for all x € LVar(p),
@ is satisfiable and ¢ = o is valid

» rewrite relation =+x on constrained terms is defined as ~ - —>x - ~

u ﬁq"rj;/g;aictft IWC 2025 2 September 2025 o re 2. Confluence Results 11/27

advanced confluence criteria require rewriting of constrained terms and equations

Definitions

» constraint ¢ is valid if [oy] = T for all substitutions « such that v(x) € Val for x € Var(y)

» constrained terms s [¢] and t [¢] are equivalent (s [¢] ~ t [«]) if for every substitution
v E ¢ with Dom(c) = Var(g) there is substitution § F ¢ with Dom(d) = Var(v) such that
sy = td, and vice versa

» s[p] =r t[e] if s|p = o and t = s[ro], for some position p, constrained rewrite rule
¢ — r [¢] in R and substitution o such that o(x) € Val U Var(y) for all x € LVar(p),
@ is satisfiable and ¢ = o is valid

» rewrite relation =+x on constrained terms is defined as ~ - —>x - ~
» LCTRSs R and S share same theory (R ~ S) if they differ only in 7 and their respective
rule sets

AM_

u i‘;”é:ﬁ{ﬁiéft IWC 2025 2 September 2025 o re 2. Confluence Results 11/27

Confluence Methods for LCTRSs

Kop & Nishida (FroCoS 2013)

common analysis techniques for term rewriting extend to LCTRSs without much effort

u m}igg;aictet IWC 2025 2 September 2025 oV ne 2. Confluence Results 12/27

Confluence Methods for LCTRSs CADE 2023

Kop & Nishida (FroCoS 2013)

common analysis techniques for term rewriting extend to LCTRSs without much effort

u mi;/g;aictet IWC 2025 2 September 2025 oV ne 2. Confluence Results 12/27

Confluence Methods for LCTRSs IJCAR 2024

Kop & Nishida (FroCoS 2013)

common analysis techniques for term rewriting extend to LCTRSs without much effort

u mi;/g;aictet IWC 2025 2 September 2025 oV e 2. Confluence Results 12/27

Confluence Methods for LCTRSs TACAS 2025

Kop & Nishida (FroCoS 2013)

common analysis techniques for term rewriting extend to LCTRSs without much effort

u mi;/g;aictet IWC 2025 2 September 2025 oV e 2. Confluence Results 12/27

Outline

3. Redundant Rules

B universitat
B hnsbruck. W€ 2025 2 September 2025 ol 3. Redundant Rules 1327

rewrite rule / — r € R is redundant if ¢ —>’7k2\{£%r} r

u ﬁﬂ!ﬁﬁﬁ@f‘ IWC 2025 2 September 2025 ol 3. Redundant Rules 14/27

https://ari-cops.uibk.ac.at/ARI/?q=409

rewrite rule / — r € R is redundant if ¢ —>;‘2\{£%r} r

if £ — r € R is redundant then R is confluent <= R\ {¢ — r} is confluent

u ﬁanj;/g;aictft IWC 2025 2 September 2025 oV e 3. Redundant Rules 14/27

https://ari-cops.uibk.ac.at/ARI/?q=409

rewrite rule / — r € R is redundant if ¢ %%\{éar} r

if £ — r € R is redundant then R is confluent <= R\ {¢ — r} is confluent

TRS R = {f(f(x)) — x, f(x) — f(f(x))} has two non-trivial critical pairs g
f(f(f(x))) ~ x x =~ f(f(f(x)))
AM_

u mi;/g;aictet IWC 2025 2 September 2025 oV e 3. Redundant Rules 14/27

https://ari-cops.uibk.ac.at/ARI/?q=409

rewrite rule / — r € R is redundant if ¢ %%\{Zar} r

if £ — r € R is redundant then R is confluent <= R\ {¢ — r} is confluent

TRS R = {f(f(x)) — x, f(x) — f(f(x))} has two non-trivial critical pairs >
f(f(f(x))) ~ x x =~ f(f(f(x)))

which are joinable f(f(f(x))) — f(x) — f(f(x)) — x

u m}igg;aictet IWC 2025 2 September 2025 oV e 3. Redundant Rules 14/27

https://ari-cops.uibk.ac.at/ARI/?q=409

rewrite rule / — r € R is redundant if ¢ %%\{Zar} r

if £ — r € R is redundant then R is confluent <= R\ {¢ — r} is confluent

TRS R = {f(f(x)) — x, f(x) — f(f(x))} has two non-trivial critical pairs >
f(f(f(x))) ~ x x =~ f(f(f(x)))

which are joinable f(f(f(x))) — f(x) — f(f(x)) — x but not by development step

u m}igg;aictet IWC 2025 2 September 2025 oV re 3. Redundant Rules 14/27

https://ari-cops.uibk.ac.at/ARI/?q=409

rewrite rule / — r € R is redundant if ¢ %%\{Zar} r

if £ — r € R is redundant then R is confluent <= R\ {¢ — r} is confluent

TRS R = {f(f(x)) — x, f(x) — f(f(x))} has two non-trivial critical pairs >
f(f(f(x))) ~ x x =~ f(f(f(x)))

which are joinable f(f(f(x))) — f(x) — f(f(x)) — x but not by development step
adding rule f(x) — x results in four new critical pairs

resulting TRS is development-closed

u m}igg;aictet IWC 2025 2 September 2025 oV ne 3. Redundant Rules 14/27

https://ari-cops.uibk.ac.at/ARI/?q=409

» constrained rewrite rule p: £ — r [¢] € R is redundant if

=N [@AECP] Lﬁ%\{p}}l E/’r-l‘fr/ [’l/}]

for some trivial ¢/ ~ r’ [¢]

u i‘;”é:g{ﬁiéft IWC 2025 2 September 2025 o re 3. Redundant Rules 15/27

» constrained rewrite rule p: £ — r [¢] € R is redundant if

L=r [(,O/\gcp] Lﬁ;?,\{p}}l E/’&“r/ [’l/}]

' [v]

for some trivial ¢ ~ r

constrained rewrite rule p: f(x +x) — f(z) [z=2-x] € R is redundant

u m}igg;aictet IWC 2025 2 September 2025 oV e 3. Redundant Rules 15/27

» constrained rewrite rule p: £ — r [¢] € R is redundant if

=N [(fj/\gcp] Lﬁ;?,\{p}}l E/%r/ [’l/}]

for some trivial ¢/ ~ r’ [¢]

constrained rewrite rule p: f(x +x) — f(z) [z=2-x] € R is redundant:

f(x+x) = f(z) [z=2-x] Zr\(p1.>1 f(Z) = f(2) [z=2-xNZ = x+X]

u mi;/g;aictft IWC 2025 2 September 2025 oV ne 3. Redundant Rules 15/27

» constrained rewrite rule p: £ — r [¢] € R is redundant if

=N [tp/\zf’cp] Lﬁ;?,\{p}}l E/%r/ [’l/}]
for some trivial ¢/ ~ r’ [¢]

» set of constrained rules S is redundant in R if all its rules are redundant in R

constrained rewrite rule p: f(x +x) — f(z) [z=2-x] € R is redundant:

f(x+x) = f(z) [z=2-x] Zr\(p1.>1 f(Z) = f(2) [z=2-xNZ = x+X]

u m}igg;aictft IWC 2025 2 September 2025 oV ne 3. Redundant Rules 15/27

Definitions

» constrained rewrite rule p: £ — r [¢] € R is redundant if
L=r [(,0/\5(3/)] L)j;?'\{p}>l E/’&“r/ [’l/}]
for some trivial ¢/ =~ r’ [¢]

» set of constrained rules S is redundant in R if all its rules are redundant in R

constrained rewrite rule p: f(x +x) — f(z) [z=2-x] € R is redundant:

f(x+x) = f(z) [z=2-x] Zr\(p1.>1 f(Z) = f(2) [z=2-xNZ = x+X]

if set of constrained rules S is redundantin LCTRS R and R ~ S then

R is confluent <= R US is confluent

u m}igg;aictet IWC 2025 2 September 2025 oV ne 3. Redundant Rules 15/27

if foreveryrule p: £ —r [p] €S

€ ~r [QO/\ng] (‘Nl—);a\{p}’>€ K' ~ r/ ['(p]
for some trivial ¢ =~ r’ [¢] and R ~ S then

R is confluent =— R U S is confluent

M universitat
B universitdt |wC 2025 2 September 2025 o> 3. Redundant Rules 16/27

Theorem

if foreveryrule p: £ —r [p] €S
f ~r [SD/\ng] <L>;3\{p},>e f’ ~ r/ ['(p]
for some trivial ¢ =~ r’ [¢] and R ~ S then

R is confluent =— R U S is confluent

LCTRS R over theory Ints

f(x,y) = x+y [x> 0] f(x,y)Ld(x,y) [x=2-yAy>0]
f(x,y) = f(y,x) [x < 0] d(x,y) > y+x

M universitat
B universitdt |wC 2025 2 September 2025 o> 3. Redundant Rules 16/27

Theorem

if foreveryrule p: £ —r [p] €S
f ~r [SD/\ng] <L>%\{P},>€ f’ ~ r/ ['(p]
for some trivial ¢ =~ r’ [¢] and R ~ S then

R is confluent =— R U S is confluent

LCTRS R over theory Ints

f(xy) = x+y [x>0] f(x,y) = dx,y) [x=2-y Ay > 0]
f(x,y) = f(y,x) [x < 0] d(x,y) > y+x

has two constrained critical pairs with constraint ¢ = (x =2-y Ay > 0)

X+y~dxy) [x > 0A] dx,y) = x+y [¢ Ax > 0]

M universitat
B universitdt |wc 2025 2 September 2025 o> 3. Redundant Rules 16/27

Example (cont’d)

LCTRS R over theory Ints

f(x,y)i>x+y [x > 0] f(x,y)id(x,y) [x=2-yAy>0]
f(x,y) 2+ f(y.x) [x < 0] d(x,y) 2 y+x

has two constrained critical pairs with constraint ¢ = (x =2-y Ay > 0)

x+y=dxy) [x>0Ag] d(x,y) = x+y [p Ax > 0]

M universitat
B universitdt |wC 2025 2 September 2025 o> 3. Redundant Rules 17727

Example (cont’d)
LCTRS R over theory Ints
f(x,y) — x+y [x> 0] f(x,y) 2 d(x,y) [x=2-y Ay > 0]
f(x,y) - f(y,x) [x < 0] d(x.y) 2 y+x
has two constrained critical pairs with constraint ¢ = (x =2-y Ay > 0)
x+y=~dXxy) [x>0A] dix,y) = x+y [¢ Ax > 0]
conversion of

fx,y) = d(x,y) [¢] <=r\(s),5e X+y = dxy) [¢]

M universitat
B universitdt |wC 2025 2 September 2025 o2 3. Redundant Rules 17127

Example (cont’d)
LCTRS R over theory Ints
f(x,y) — x+y [x> 0] f(x,y) 2 d(x,y) [x=2-y Ay > 0]
f(x,y) - f(y,x) [x < 0] d(x.y) 2 y+x
has two constrained critical pairs with constraint ¢ = (x =2-y Ay > 0)
x+y=~dXxy) [x>0A] dix,y) = x+y [¢ Ax > 0]
conversion of

fx,y) = d(x,y) [¢] <=r\(s),5e X+y = dxy) [¢]
SOIR\(BL>e XTY =YX [¢]

M universitat
B universitdt |wC 2025 2 September 2025 o> 3. Redundant Rules 17127

Example (cont’d)
LCTRS R over theory Ints
f(x,y) — x+y [x> 0] f(x,y) 2 d(x,y) [x=2-y Ay > 0]
f(x,y) - f(y,x) [x < 0] d(x.y) 2 y+x
has two constrained critical pairs with constraint ¢ = (x =2-y Ay > 0)
x+y=~dXxy) [x>0A] dix,y) = x+y [¢ Ax > 0]
conversion of
fix.y) = dxy) [¢] <Pr\gpy,>e X Ty = dxy) [¢]

<L>'R\{ﬁ},>e Z%y+X [QO/\Z:X+y]

M universitat
B universitdt |wC 2025 2 September 2025 o> 3. Redundant Rules 17127

Example (cont’d)
LCTRS R over theory Ints
f(x,y) — x+y [x> 0] f(x,y) 2 d(x,y) [x=2-y Ay > 0]
f(x,y) - f(y,x) [x < 0] d(x.y) 2 y+x
has two constrained critical pairs with constraint ¢ = (x =2-y Ay > 0)
x+y=~dXxy) [x>0A] dix,y) = x+y [¢ Ax > 0]
conversion of
fix.y) = dxy) [¢] <Pr\gpy,>e X Ty = dxy) [¢]
SOIR\(BL>e XTY =YX [¢]

CIR\B)>e ZRY X [@Az=x+Yy]
sy ZRZ [pAz=x+yNZ =y+x]

M universitat
B universitdt |wc 2025 2 September 2025 o> 3. Redundant Rules 17127

Example (cont’d)

LCTRS R over theory Ints
f(x,y) = x+y [x> 0] f(x,y) 5 d(x,y) [x=2-y Ay > 0]
fx,y) 2 f(y.x) [x < 0] d(x,y) = y+x
has two constrained critical pairs with constraint ¢ = (x =2-y Ay > 0)
x+y~dXxy) [x>0A¢p] d(x,y) = x+y [p Ax > 0]
conversion of
fx,y) = d(x,y) [¢] <=r\(s),5e X+y = dxy) [¢]
<L>'R\{ﬁ},>e Z%y+X [QO/\Z:X+y]
Sr\prse 222 [pAz=x+yANZ =y +x]

LCTRS R\ {8} is orthogonal

M universitat
B universitdt |wc 2025 2 September 2025 o> 3. Redundant Rules 17127

Example (cont’d)

LCTRS R over theory Ints
f(x,y) = x+y [x> 0] f(x,y)i>d(x,y) [x=2-yAy> 0]
f(x.y) 2 f(y.x) [x < 0] d(x,y) 5 y +x
has two constrained critical pairs with constraint ¢ = (x =2-y Ay > 0)
x+y~dXxy) [x>0A¢p] d(x,y) = x+y [p Ax > 0]
conversion of
f(x,y) = d(x,y) [¢] <= r\(p},5c Xty =d(x,y) [¢]

CIR\B)>e ZRY X [@Az=x+Yy]
sy ZRZ [pAz=x+yNZ =y+x]

LCTRS R\ {8} is orthogonal = R confluent

M universitat
B universitdt |wC 2025 2 September 2025 o> 3. Redundant Rules 17727

Implementation Heuristics

@ for s~ t [¢] € CCP(R) if

s~t [y] *93%,21 : *H%z.gz u=v [y]

for trivial u v [¢] thenadd s - u [¢] and t - v [¢] to R

u mi;/g;aictft IWC 2025 2 September 2025 oV ne 3. Redundant Rules 18/27

Implementation Heuristics

@ fors~t [¢] € CCP(R) if

sat[p] =Rz SR URV [Y]
for trivial u v [¢] thenadd s - u [¢] and t - v [¢] to R
@ for p: £ —r [p]eRif
rlenEC,] =% r' [¥]

thenadd ¢ — r’ [¢] to R

u mi;/g;aictft IWC 2025 2 September 2025 ol ne 3. Redundant Rules 18/27

Implementation Heuristics

@ fors~t [¢] € CCP(R) if

s~t [y] *ﬁzgl : *H%z.gz u=v [y]
for trivial u = v [¢] thenadd s - u [p] and t - v [¢] to R
@ for p: ¢ —r [p] €R Iif
rleneC,] =% r [¥]
thenadd ¢ — r’ [¢] to R
® remove p: £ — r [¢] from R if
Cmr [pAEC,] =R\(p).31° = R\(ph.32 URV [V]

for trivial u ~ v [¢]

u ﬁq"rj;/g;aictft IWC 2025 2 September 2025 ol ne 3. Redundant Rules 18/27

Outline

4. Reduction Method

W universitat 4. Reduction Method 19/27
Wuniversitst 1w 2025 2 September 2025 el educti /

» PCP(R) denotes set of parallel critical pairs of TRS R

u iwanniggFﬁictEt IWC 2025 2 September 2025 oV ne 4. Reduction Method 20/27

» PCP(R) denotes set of parallel critical pairs of TRS R
» TRS R is convertible by TRS C if C C R and s <>} t forall s =t € PCP(R)

u ﬁ"&!ﬁﬁﬁk‘f‘ IWC 2025 2 September 2025 oV ne 4. Reduction Method 20/27

Definitions

» PCP(R) denotes set of parallel critical pairs of TRS R
» TRS R is convertible by TRS C if C C R and s <»% t forall s =t € PCP(R)

left-linear TRS R is confluent if R is convertible by confluent TRS C

u i‘;”é:ﬁ{ﬁiéft IWC 2025 2 September 2025 oV ne 4. Reduction Method 20/27

Definitions

» PCP(R) denotes set of parallel critical pairs of TRS R
» TRS R is convertible by TRS C if C C R and s <»% t forall s =t € PCP(R)

left-linear TRS R is confluent if R is convertible by confluent TRS C

Definitions

» LCTRS C is subsystem of LCTRS R (CE R) ifC~R and C C R

u m}igg;aictet IWC 2025 2 September 2025 oV ne 4. Reduction Method 20/27

Definitions

» PCP(R) denotes set of parallel critical pairs of TRS R
» TRS R is convertible by TRS C if C C R and s <»% t forall s =t € PCP(R)

left-linear TRS R is confluent if R is convertible by confluent TRS C

Definitions

» LCTRS C is subsystem of LCTRS R (CER) ifC~R and C C R
» constrained parallel critical pair s ~ t [¢] is convertible by LCTRS C if
st o] <5es. St (Y]

for some trivial s’ =~ t’ []

u m}igg;aictet IWC 2025 2 September 2025 oV ne 4. Reduction Method 20/27

Definitions

» PCP(R) denotes set of parallel critical pairs of TRS R
» TRS R is convertible by TRS C if C C R and s <»% t forall s =t € PCP(R)

left-linear TRS R is confluent if R is convertible by confluent TRS C

Definitions

» LCTRS C is subsystem of LCTRS R (CER) ifC~R and C C R
» constrained parallel critical pair s ~ t [¢] is convertible by LCTRS C if
st o] e s mt Y]
for some trivial s’ =~ t’ []
» LCTRS R is convertible by C if C T R and all constrained parallel critical pairs CPCP(R) of
‘R are convertible by C
AM_

u m}igg;aictet IWC 2025 2 September 2025 oV ne 4. Reduction Method 20/27

left-linear LCTRS R is confluent if R is convertible by confluent LCTRS C

B universitat i
B hnsbruck. W€ 2025 2 September 2025 E s 4. Reduction Method 2127

Theorem

left-linear LCTRS R is confluent if R is convertible by confluent LCTRS C

LCTRS R over theory Ints

f(x,y) = x+y [x> 0] f(x,y)i>d(x,y) [x=2-yAy>0]
f(x,y) - f(y,x) [x < 0] d(x,y) 2 y+x

has two parallel constrained critical pairs with constraint ¢ = (x =2-y Ay > 0)

x+y~dxy) [x>0A¢] dix,y) ® x+y [¢ Ax> 0]

B universitat i
B hnsbruck. W€ 2025 2 September 2025 ol 4. Reduction Method 2127

Theorem

left-linear LCTRS R is confluent if R is convertible by confluent LCTRS C

LCTRS R over theory Ints

fx,y) % x+y [x> 0] fx,y) 2> d(x,y) [x=2-y Ay > 0]
f(x,y) 2 f(y,x) [x < 0] d(x.y) 2 y+x

has two parallel constrained critical pairs with constraint ¢ = (x =2-y Ay > 0)
x+y=dxy) [x>0A¢] dix,y) = x+y [¢ Ax > 0]
both are convertible by C = {d}
X+y~dXxy) [x>0Ap] 5 X+yxy+x [x>0A¢]

B universitat i
B hnsbruck. W€ 2025 2 September 2025 ol 4. Reduction Method 2127

Theorem

left-linear LCTRS R is confluent if R is convertible by confluent LCTRS C

LCTRS R over theory Ints

fx,y) % x+y [x> 0] fx,y) 2> d(x,y) [x=2-y Ay > 0]
f(x,y) 2 f(y,x) [x < 0] d(x.y) 2 y+x

has two parallel constrained critical pairs with constraint ¢ = (x =2-y Ay > 0)

x+y~dxy) [x>0A¢] dix,y) ® x+y [¢ Ax> 0]

both are convertible by C = {d}

X+y~dXxy) [x>0Ap] 5 X+yxy+x [x>0A¢]
st zmZ [Xx>0ANpAZ=x+yANZ =y+x]

B universitat i
B hnsbruck. W€ 2025 2 September 2025 ol 4. Reduction Method 2127

Rlc ={f{—reR|Fun(¢) C Fun(C)} for TRSs R and C

i 22/27
u .U"ivgrsitft IWC 2025 2 September 2025 o re 4. Reduction Method
Innsbrucl

Rlc ={f{—reR|Fun(¢) C Fun(C)} for TRSs R and C

if Rlc € —¢ € —% and R is confluent then C is confluent

u ﬁanj;/g;aictft IWC 2025 2 September 2025 oV ne 4. Reduction Method 22/27

Rlc ={f{—reR|Fun(¢) C Fun(C)} for TRSs R and C

if Rlc € —¢ € —% and R is confluent then C is confluent

u ﬁanj;/g;aictft IWC 2025 2 September 2025 oV ne 4. Reduction Method 22/27

Rlc ={f{—reR|Fun(¢) C Fun(C)} for TRSs R and C

if Rlc € —¢ € —% and R is confluent then C is confluent

» Fung(s) = Fun(s) \ Fn

u m}igg;aictet IWC 2025 2 September 2025 oV ne 4. Reduction Method 22/27

Rlc ={f{—reR|Fun(¢) C Fun(C)} for TRSs R and C

if Rlc € —¢ € —% and R is confluent then C is confluent

» Funie(s) = Fun(s) \ Fin
» Rle ={l = r [¢] € R| Funee(¥) € Fun(C)} for LCTRSs R and C

u m}igg;aictet IWC 2025 2 September 2025 oV ne 4. Reduction Method 22/27

Rlc ={f{—reR|Fun(¢) C Fun(C)} for TRSs R and C

if Rlc € —¢ € —% and R is confluent then C is confluent

Definitions

» Funie(s) = Fun(s) \ Fin
» Rle ={l = r [¢] € R| Funee(¥) € Fun(C)} for LCTRSs R and C
» Rl is simulated by C if every p: £ — r [¢] € R|. satisfies

Cx=r [pNEC,] e s URV [¢]

for some trivial u =~ v [¢]

u m}igg;aictet IWC 2025 2 September 2025 oV ne 4. Reduction Method 22/27

Lemma

if R[. is simulated by C and C C R then Rz C —%

B universitat i
B hnsbruck. W€ 2025 2 September 2025 ol 4. Reduction Method 2327

Lemma

if R[. is simulated by C and C C R then Rz C —%

Corollary

if R[c is simulated by C and C C R then

R is confluent — C is confluent

B universitat i
B hnsbruck. W€ 2025 2 September 2025 ol 4. Reduction Method 2327

Lemma

if R[. is simulated by C and C C R then Rz C —%

Corollary

if R[c is simulated by C and C C R then

R is confluent — C is confluent

Corollary

if left—linear LCTRS R is convertible by LCTRS C and R[; is simulated by C then

R is confluent <= C is confluent

B universitat i
B hnsbruck. W€ 2025 2 September 2025 ol 4. Reduction Method 2327

Outline

5. Conclusion

W universitat "
B heerocEt wce 2025 2 September 2025 oo gTe 5. Conclusion iy

Confluence Methods for LCTRSs TACAS 2025

Kop & Nishida (FroCoS 2013)

common analysis techniques for term rewriting extend to LCTRSs without much effort

M universitat Les” Y i
innsbruck IWC 2025 2 September 2025 o Fre 5. Conclusion 25727

Confluence Methods for LCTRSs IWC 2025

Kop & Nishida (FroCoS 2013)

common analysis techniques for term rewriting extend to LCTRSs without much effort

W universitat "
thhebruck IWC 2025 2 September 2025 o e 5. Conclusion 2527

Final Remarks

» redundant rules technique is implemented in crest (Jonas Schopf)

W universitat "
hhebruck IWC 2025 2 September 2025 o e 5. Conclusion 26727

Final Remarks

» redundant rules technique is implemented in crest (Jonas Schopf)

» crest participates in LCTRS category of Confluence Competition 2025 (later today)

'ﬁ"&!ﬁﬁﬁk‘f‘ IWC 2025 2 September 2025 o re 5. Conclusion 26/27

Final Remarks

» redundant rules technique is implemented in crest (Jonas Schopf)

» crest participates in LCTRS category of Confluence Competition 2025 (later today)

» implementation of reduction method in crest

W universitat "
hhebruck IWC 2025 2 September 2025 o e 5. Conclusion 2627

Final Remarks

» redundant rules technique is implemented in crest (Jonas Schopf)

» crest participates in LCTRS category of Confluence Competition 2025 (later today)

» implementation of reduction method in crest

» in reduction method can C C R be weakened to combination of —5 C —% and C ~ R ?

W universitat "
hhebruck IWC 2025 2 September 2025 o e 5. Conclusion 2627

Final Remarks

» redundant rules technique is implemented in crest (Jonas Schopf)

» crest participates in LCTRS category of Confluence Competition 2025 (later today)

» Jonas will defend his PhD thesis later this year

» implementation of reduction method in crest

» in reduction method can C C R be weakened to combination of —5 C —% and C ~ R ?

.ﬁaniggﬁﬁictft IWC 2025 2 September 2025 o re 5. Conclusion 26/27

AutomatedrAnalysis
ofil'ogically;
Consitrained

RewritelSystems

W universitat -
B heerocEt wce 2025 2 September 2025 o e 5. Conclusion el

	Logically Constrained Rewrite Systems
	Confluence Results
	Redundant Rules
	Reduction Method
	Conclusion

