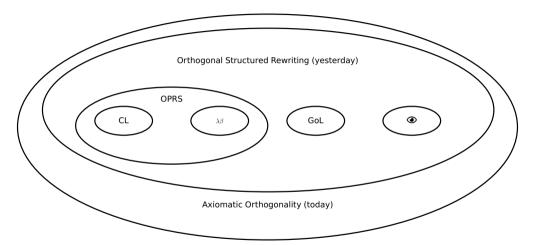


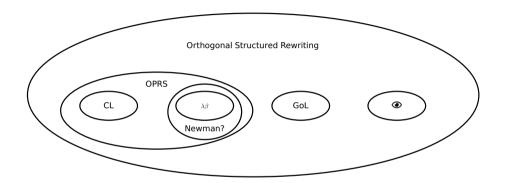
Redeeming Newman; orthogonality in rewriting Past, present and future in a 1-algebraic setting

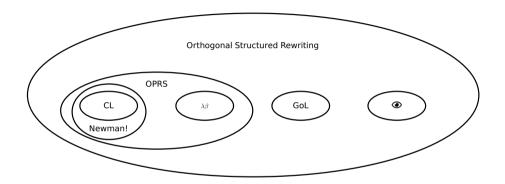
Vincent van Oostrom

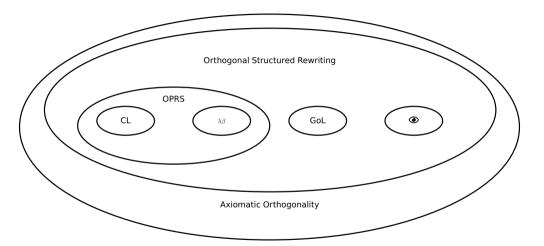
Part I: Axiomatic Orthogonality

Part II: Newman's axiomatics









Theory of Orthogonality (Terese 03)

• sequentialisation: $\rightarrow \subseteq \rightarrow \subseteq \rightarrow \Rightarrow$ (for some notion of parallel or multistep $\rightarrow \Rightarrow$)

Theory of Orthogonality

- sequentialisation: $\rightarrow \subseteq \longrightarrow \subseteq \longrightarrow$
- confluence: → has the diamond property (for some notion of residuation /)

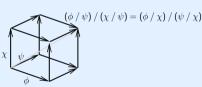
Theory of Orthogonality

- sequentialisation: $\rightarrow \subseteq \longrightarrow \subseteq \longrightarrow$
- confluence: → has the diamond property
- orthogonal: tiling 3-peak of →-steps with diamonds yields a cube

(entails co-initial reductions form semi-lattice; least upperbounds)

Theory of Orthogonality

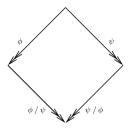
- sequentialisation: $\rightarrow \subseteq \longrightarrow \subseteq \longrightarrow$
- confluence: → has the diamond property
- orthogonal: tiling 3-peak of →-steps with diamonds yields a cube



Confluence vs. orthogonality

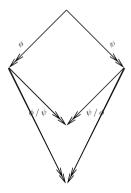
confluence, upperbound

Confluence vs. orthogonality

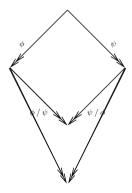


confluence, upperbound via witnessing residual function /

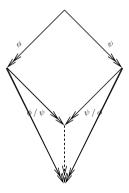
Confluence vs. orthogonality



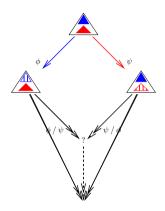
orthogonality, other upperbounds . . .



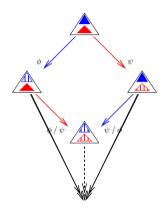
orthogonality, least among upperbounds?



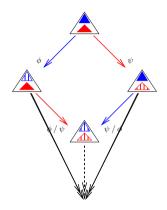
orthogonality, least upperbound



orthogonality, least upperbound doing work of both (Lévy; I(IK)

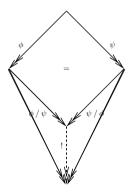


orthogonality, least upperbound doing work of both in *I(IK)*



orthogonality, least upperbound doing work of both in *I(IK)*

Diamond vs. cube



orthogonality, least upperbound w.r.t. notion of same work

OTRS (1990)

term rewrite system (TRS) is orthogonal if left-linear and no critical pairs

OTRS

term rewrite system (TRS) is orthogonal if left-linear and no critical pairs

Programme (since 1990s; Melliès, Khasidashvili, ⋄, . . .)

appropriate definitions of step and orthogonality axioms such that

- OTRS entails all steps are orthogonal to each other
- orthogonality axioms entail theory of orthogonality

Programme

appropriate definitions of step and orthogonality axioms such that

- OTRS entails all steps are orthogonal to each other
- orthogonality axioms entail theory of orthogonality

Example

• for CL / OTRSs \longrightarrow and \longrightarrow are orthogonal (Huet & Lévy)

Programme

appropriate definitions of step and orthogonality axioms such that

- OTRS entails all steps are orthogonal to each other
- orthogonality axioms entail theory of orthogonality

Example

- lacktriangle for CL / OTRSs ightarrow and ightarrow are orthogonal (Huet & Lévy)
- braids and self-distributivity are orthogonal (Melliès, Schikora)

Programme

appropriate definitions of step and orthogonality axioms such that

- OTRS entails all steps are orthogonal to each other
- orthogonality axioms entail theory of orthogonality

Example

- lacktriangle for CL / OTRSs ightarrow and ightarrow are orthogonal (Huet & Lévy)
- braids and self-distributivity are orthogonal (Melliès, Schikora)
- for $\lambda \beta$ / OPRSs \longrightarrow is orthogonal (Lévy / Klop, Bruggink)

Programme

appropriate definitions of step and orthogonality axioms such that

- OTRS entails all steps are orthogonal to each other
- orthogonality axioms entail theory of orthogonality

Example

- for CL / OTRSs \longrightarrow and \longrightarrow are orthogonal (Huet & Lévy)
- braids and self-distributivity are orthogonal (Melliès, Schikora)
- for $\lambda\beta$ / OPRSs \longrightarrow is orthogonal (Lévy / Klop, Bruggink)
- . . .

Combinatory Logic (CL) \longrightarrow

named combinatory logic (CL) rules:

```
\iota(x): Ix \to x 

\kappa(x,y): Kxy \to x 

\varsigma(x,y,z): Sxyz \to xz(yz)
```

Definition

multi-step ARS →:

- objects: terms over alphabet
- ▶ steps: terms over function symbols + rule names
- ▶ $\operatorname{src}(f(\vec{s})) = f(\operatorname{src}(\vec{s}))$ with f function symbol $\operatorname{src}(\varrho(\vec{s})) = I(\operatorname{src}(\vec{s}))$ with $\varrho(\vec{x})$ name of rule $I(\vec{x}) \to r(\vec{x})$

step ARS \rightarrow : restriction of \rightarrow steps to exactly one rule name

$$\begin{array}{ll} \iota(IK): \ I(IK) \longrightarrow IK & I(\iota(K)): \ I(IK) \longrightarrow IK \\ I(IK): \ I(IK) \longrightarrow I(IK) & \iota(\iota(K)): \ I(IK) \longrightarrow K \end{array}$$

named combinatory logic (CL) rules:

```
\begin{array}{cccc} \iota(x): & Ix & \to & x \\ \kappa(x,y): & Kxy & \to & x \\ \varsigma(x,y,z): & Sxyz & \to & xz(yz) \end{array}
```

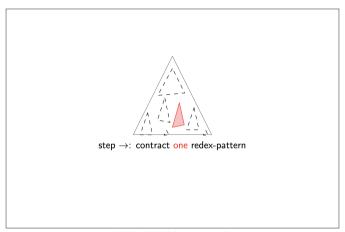
Definition

multi-step ARS →:

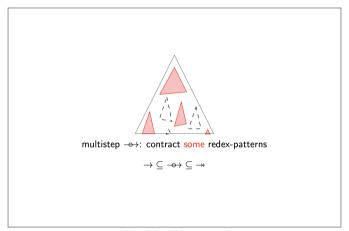
- ▶ objects: terms over alphabet
- ▶ steps: terms over function symbols + rule names
- ▶ $\operatorname{src}(f(\vec{s})) = f(\operatorname{src}(\vec{s}))$ with f function symbol $\operatorname{src}(\varrho(\vec{s})) = I(\operatorname{src}(\vec{s}))$ with $\varrho(\vec{x})$ name of rule $I(\vec{x}) \to r(\vec{x})$

step ARS \rightarrow : restriction of \rightarrow steps to exactly one rule name

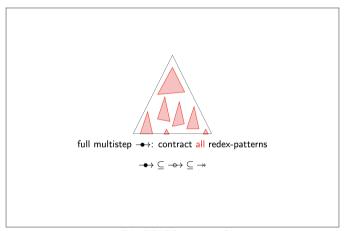
$$\iota(IK): I(IK) \to IK$$
 $I(\iota(K)): I(IK) \to IK$



ISR 08 Obergurgl



ISR 08 Obergurgl



ISR 08 Obergurgl

Intuition

residual ϕ/ψ of step ϕ after step ψ : what remains (to be done) of step ϕ after doing ψ .

Intuition

residual ϕ/ψ of step ϕ after step ψ : what remains (to be done) of step ϕ after doing ψ .

Example

residual of $I(\iota(K))$: $I({}^{I}K) \longrightarrow IK$ after $\iota(IK)$: $I(IK) \longrightarrow IK$?

Intuition

```
residual \phi/\psi of step \phi after step \psi: what remains (to be done) of step \phi after doing \psi.
```

Example

```
residual of I(\iota(K)): I(IK) \to IK after \iota(IK): I(IK) \to IK?

\iota(K): IK \to K!

and conversely?

same (but now residual is blue!)
```

Intuition

residual ϕ/ψ of step ϕ after step ψ : what remains (to be done) of step ϕ after doing ψ .

Example

residual of $SIK(IK) \longrightarrow SIKK$ after $SIK(IK) \longrightarrow I(IK)(K(IK))$?

Intuition

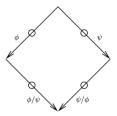
residual ϕ/ψ of step ϕ after step ψ : what remains (to be done) of step ϕ after doing ψ .

Example

residual of $SIK(IK) \rightarrow SIKK$ after $SIK(IK) \rightarrow I(IK)(K(IK))$? $I(IK)(K(IK)) \rightarrow IK(KK)!$ and conversely? $SIKK \rightarrow IK(KK)!$

Intuition

residual ϕ/ψ of step ϕ after step ψ : what remains (to be done) of step ϕ after doing ψ .



 ϕ/ψ and ψ/ϕ : multisteps ending in same object

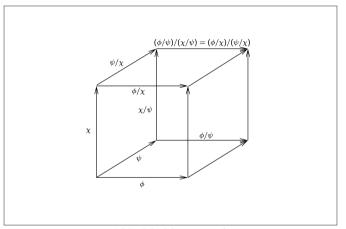
Definition

1-ra is rewrite system with 1-operations

- ▶ 1 the empty step for each object (doing nothing)
- / the residual map from pairs of (co-initial) steps to steps
- satisfying axioms

$$\begin{array}{rcl} \phi/\phi &=& 1\\ \phi/1 &=& \phi\\ 1/\phi &=& 1\\ (\phi/\psi)/(\chi/\psi) &=& (\phi/\chi)/(\psi/\chi) \end{array} \mbox{ (cube)}$$

ISR 08 Obergurgl



ISR 08 Obergurgl

Theorem

left-linear and non-overlapping TRS induces 1-ra on multisteps \longrightarrow

- empty multisteps as units
- residual operation defined by induction on multisteps

$$\begin{array}{rcl} f(\phi_1,\ldots,\phi_n)/f(\psi_1,\ldots,\psi_n) &=& f(\phi_1/\psi_1,\ldots,\phi_n/\psi_n) \\ \varrho(\phi_1,\ldots,\phi_n)/l(\psi_1,\ldots,\psi_n) &=& \varrho(\phi_1/\psi_1,\ldots,\phi_n/\psi_n) \\ l(\phi_1,\ldots,\phi_n)/\varrho(\psi_1,\ldots,\psi_n) &=& r(\phi_1/\psi_1,\ldots,\phi_n/\psi_n) \\ \varrho(\phi_1,\ldots,\phi_n)/\varrho(\psi_1,\ldots,\psi_n) &=& r(\phi_1/\psi_1,\ldots,\phi_n/\psi_n) \\ \text{for every rule } \varrho(\mathbf{x}_1,\ldots,\mathbf{x}_n) : \; l(\mathbf{x}_1,\ldots,\mathbf{x}_n) \to r(\mathbf{x}_1,\ldots,\mathbf{x}_n) \end{array}$$

Example

- $I(\iota(K))/\iota(IK) = \iota(K)$

ISR 08 Obergurgl

Definition

1-rac is rewrite system with 1-operations

- ▶ 1 the empty step for each object (doing nothing)
- ▶ / the residual map from pairs of (co-initial) steps to steps
- ▶ · the composition map on composable steps
- satisfying axioms

$$\begin{array}{rcl} \phi/\phi &=& 1\\ \phi/1 &=& \phi\\ 1/\phi &=& 1\\ (\phi/\psi)/(\chi/\psi) &=& (\phi/\chi)/(\psi/\chi)\\ 1\cdot 1 &=& 1\\ \chi/(\phi\cdot\psi) &=& (\chi/\phi)/\psi\\ (\phi\cdot\psi)/\chi &=& (\phi/\chi)\cdot(\psi/(\chi/\phi)) \end{array}$$

ISR 08 Obergurgl

Lemma

1-ra on \rightarrow induces a 1-rac on \rightarrow (by tiling)

Lemma

1-ra on \rightarrow induces a 1-rac on \rightarrow (by tiling)

Example

- $\langle \{0,1\},0,-\rangle$ is a 1-ra, for monus (cut-off subtraction)
- $\langle \mathbb{N}, 0, \dot{-}, + \rangle$ is a 1-rac (induced by 1-ra)

Definition

 $\phi \preceq \psi := (\phi / \psi = 1)$ is natural order on co-initial steps ϕ, ψ

Definition

 $\phi \preceq \psi := (\phi \, / \, \psi = \mathbf{1})$ is natural order on co-initial steps ϕ, ψ

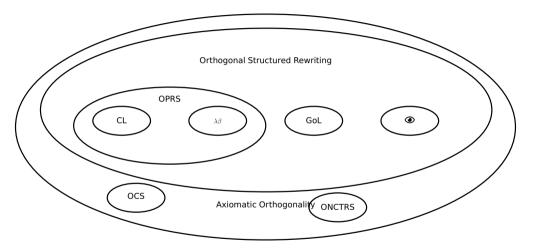
Theorem

 $\langle \rightarrow, \mathbf{1}, /, \cdot \rangle \text{ is a 1-rac whose natural order is a partial order where } \phi \ / \ \psi := \phi' \text{ for every peak } \phi, \psi \text{ and its pushout valley } \psi', \phi'$

iff

 $\langle
ightarrow,
m 1, \cdot
angle$ is a 1-monoid that is

- left-cancellative (each χ is epi: for all ϕ, ψ , if $\chi \cdot \phi = \chi \cdot \psi$ then $\phi = \psi$)
- gaunt (isomorphisms are 1)
- has pushouts (lubs of peaks exist)



Theorem

- orthogonal context-sensitive TRS (OCS; Lucas) are orthogonal
- orthogonal normal CTRS (ONCTRS; Bergstra & Klop) are orthogonal

Theorem

- orthogonal context-sensitive TRS (OCS; Lucas) are orthogonal
- orthogonal normal CTRS (ONCTRS; Bergstra & Klop) are orthogonal

Proof.

by simple adaptation of OTRS case, of multisteps and residuation /:

- OCS: all frozen arguments are terms (not steps; no redexes inside)
- ONCTRS: conditions must hold for sources of steps in arguments of rules (uses stability)

Theorem

- orthogonal context-sensitive TRS (OCS; Lucas) are orthogonal
- orthogonal normal CTRS (ONCTRS; Bergstra & Klop) are orthogonal

Programme

investigate for structured rewrite systems \mathcal{T} declared to be orthogonal in the literature, whether they have a natural underlying 1-ra (e.g., $\rightarrow \rightarrow \rightarrow \mathcal{T}$)

Newman's axiomatic confluence result (1942)

Newman's Goal

axiomatise Church–Rosser's 1936 confluence proof for λ -calculus

Newman's axiomatic confluence result

Newman's Goal

axiomatise Church–Rosser's 1936 confluence proof for λ -calculus

Notations

• $\phi \mid \psi$ denotes set of ψ -derivates of ϕ (for co-initial ϕ, ψ ; each ψ -derivate is step from target of ψ)

Newman's axiomatic confluence result

Newman's Goal

axiomatise Church–Rosser's 1936 confluence proof for λ -calculus

Notations

- $\phi \mid \psi$ denotes set of ψ -derivates of ϕ
- ${}_{\varsigma'}^{\varrho} \diamond_{\varrho'}^{\varsigma}$ denotes $\varrho, \varsigma, \varsigma', \varrho'$ form a diamond

Newman's axiomatic confluence result

Theorem

there are reductions ς' , ϱ' such that $\varsigma' \diamond_{\varrho'}^{\varsigma}$ and $\Phi \mid (\varrho \cdot \varsigma') = \Phi \mid (\varsigma \cdot \varrho')$ given co-initial reductions ϱ, ς and set of steps Φ , if for a predicate J:

(
$$\Delta_1$$
) $\phi \mid \psi = \emptyset$ iff $\phi = \psi$

(
$$\Delta_2$$
) if $\phi \neq \psi$, then $(\phi \mid \chi) \cap (\psi \mid \chi) = \emptyset$

(Δ_3) if $\phi \neq \psi$, then there exist co-final developments ϱ of $\psi \mid \phi$, and ς of $\phi \mid \psi$

(
$$\Delta_4$$
) for ϱ and ς in (Δ_3), $\chi \mid (\phi \cdot \varrho) = \chi \mid (\psi \cdot \varsigma)$

(J_1) if ϕ J ψ , then ϕ | ψ has precisely one member

(J₂) if
$$\phi_1$$
 J ϕ_2 or $\phi_1=\phi_2$ and $\psi_1\in\phi_1\mid \chi$ and $\psi_2\in\phi_2\mid \chi$, then ψ_1 J ψ_2 or $\psi_1=\psi_2$

Newman's Failure

```
(J<sub>1</sub>) If \xi J\eta, \xi \mid \eta has precisely one member.

(J<sub>2</sub>) If \eta_1 \in \xi_1 \mid \xi and \eta_2 \in \xi_2 \mid \xi, and if \xi_1 J \xi_2 or \xi_1 = \xi_2, then \eta_1 J \eta_2 or \eta_1 = \eta_2.

J represents non-nesting of redexes

Example (Schroer)

\lambda-calculus does not satisfy Newman's axioms

\omega(\lambda y.\omega y) \to (\lambda y.\omega y)\lambda y.\omega y \to \underline{\omega(\lambda y.\omega y)} \to (\lambda y.\omega y)\lambda y.\omega y

with \omega = \lambda x.xx

\blacktriangleright by (J<sub>2</sub>) derivates of \omega y are (mutually) J-related.
```

 \triangleright by (J₂) whole term and ωy -redex are (mutually) *J*-related.

▶ the ωy -redex is duplicated violating (J₁).

ISR 08 Obergurgl

Newman's Success / Redemption

Theorem

theorem does apply to Combinatory Logic (CL)

Newman's Success / Redemption

Theorem

theorem does apply to Combinatory Logic (CL)

Proof.

- $\phi \mid \psi := \mathbf{residuals}$ of ϕ after ψ
- $\phi J \psi$ if ϕ, ψ parallel to each other (formally: redexes at parallel positions)

Newman's Success / Redemption

Theorem

theorem does apply to Combinatory Logic (CL)

Proof.

- $\phi \mid \psi := \mathbf{residuals}$ of ϕ after ψ
- $\phi J \psi$ if ϕ, ψ parallel to each other

Theorem

 $\langle \dashrightarrow, \emptyset, | \rangle$ is a 1-ra, under assumptions of Newman's theorem

Theorem

 $\langle -\!\!\!\!+\!\!\!\!+\!\!\!\!+\!\!\!\!+,\emptyset,|
angle$ is a 1-ra, under assumptions of Newman's theorem

Proof.

- sets Φ of *J*-related (co-initial) steps as steps of —
- target of Φ is target of a(ny) development of Φ

Theorem

 $\langle -\!\!\!\!+\!\!\!\!+\!\!\!\!+\!\!\!\!+,\emptyset,|
angle$ is a 1-ra, under assumptions of Newman's theorem

Proof.

- sets Φ of J-related (co-initial) steps as steps of →→
- target of Φ is target of a(ny) development of Φ

Corollary

CL / OTRSs reductions have pushouts / least upperbounds (theory of orthogonality applies)

Theorem

 $\langle -\!\!\!\!+\!\!\!\!+\!\!\!\!+\!\!\!\!+,\emptyset,|
angle$ is a 1-ra, under assumptions of Newman's theorem

Proof.

- sets Φ of J-related (co-initial) steps as steps of —
- target of Φ is target of a(ny) development of Φ

Corollary

CL / OTRSs reductions have pushouts / least upperbounds

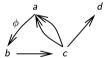
seen via 1-ra(c)s above; now factored through Newman's axioms / result

Definition

 $ARS \rightarrow is \langle A, \Phi, src, tgt \rangle$

- ► A set of objects a, b, c, ...
- \blacktriangleright Φ set of steps ϕ , ψ , χ , . . .
- ► src, tgt : Φ → A source and target functions

 $\phi: a \rightarrow b$ denotes step ϕ with source a and target b



ARS is directed graph, e.g.

ISR 08 Obergurgl

Idea of 1-algebras

• algebra having rewrite system as carrier

Idea of 1-algebras

- algebra having rewrite system as carrier
- 1-operations yielding steps

Idea of 1-algebras

- algebra having rewrite system as carrier
- 1-operations yielding steps

1-algebra like algebra but then operating on steps instead of objects

Idea of 1-algebras

- algebra having rewrite system as carrier
- 1-operations yielding steps

1-algebra operations of interest here: residuation, unit, composition, reverse

1-algebra operations of interest here: residuation, unit, composition, reverse

1-algebra laws of interest on 1-operations: those of 1-ra(c)s and also:

1-algebra operations of interest here: residuation, unit, composition, reverse

1-algebra laws of interest on 1-operations: those of 1-ra(c)s and also:

$$\begin{array}{rcl}
\mathbf{1} \cdot \varrho &=& \varrho & \mathbf{1}^{-1} &=& \mathbf{1} \\
\varrho \cdot \mathbf{1} &=& \varrho & (\varrho \cdot \varsigma)^{-1} &=& \varsigma^{-1} \cdot \varrho^{-1} \\
(\varrho \cdot \varsigma) \cdot \zeta &=& \varrho \cdot (\varsigma \cdot \zeta) & (\varrho^{-1})^{-1} &=& \varrho
\end{array}$$

algebra terminology reuse: speak of 1-monoid, 1-involution etc. (category is a 1-monoid)

freely constructing rewrite relations from rewrite relation \rightarrow

freely constructing rewrite relations from rewrite relation ightarrow

ullet \leftrightarrow is the symmetric closure of \to

freely constructing rewrite relations from rewrite relation ightarrow

- ullet \leftrightarrow is the symmetric closure of \to
- ullet wo is the reflexive–transitive closure of wo (reachability)

freely constructing rewrite relations from rewrite relation ightarrow

- ullet \leftrightarrow is the symmetric closure of \to
- ullet wo is the reflexive–transitive closure of wo
- \leftrightarrow^* is the equivalence closure of \to (convertibility)

freely constructing rewrite relations from rewrite relation ightarrow

- ullet \leftrightarrow is the symmetric closure of \to
- ullet wo is the reflexive–transitive closure of wo
- \leftrightarrow^* is the equivalence closure of \rightarrow
- ...

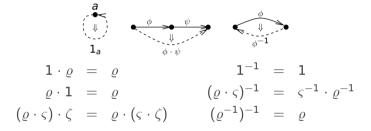
Freely constructing rewrite relations

freely constructing rewrite relations from rewrite relation ightarrow

- ullet \leftrightarrow is the symmetric closure of \to
- ullet wo is the reflexive–transitive closure of wo
- \leftrightarrow^* is the equivalence closure of \rightarrow
- ...

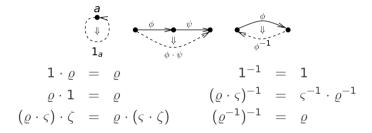
new relations constructed by closures (least relation extending \rightarrow having properties; universality)

freely constructing rewrite systems from rewrite system \rightarrow

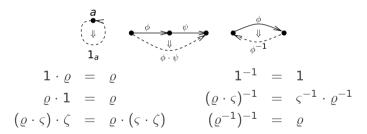


freely constructing rewrite systems from rewrite system ightarrow

 $\langle \leftrightarrow, \ ^{-1} \rangle$ is free **1**-involutoid generated by \rightarrow

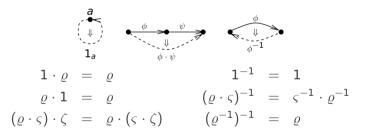


freely constructing rewrite systems from rewrite system ightarrow



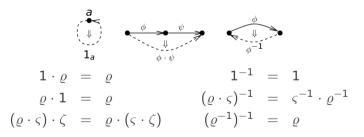
freely constructing rewrite systems from rewrite system ightarrow

 $\langle \leftrightarrow^*, \mathbf{1}, \ ^{-1}, \cdot \rangle$ is free 1-involutive 1-monoid generated by \to (conversion; dagger category)



freely constructing rewrite systems from rewrite system ightarrow

new systems constructed by free generation of 1-algebras (universality: map to such a 1-algebra factors uniquely through the free one)



• Newman's axioms fail to hold for λ -calculus (Schroer)

- Newman's axioms fail to hold for λ -calculus (Schroer)
- Newman's axioms do hold for CL (OTRSs; parallel reduction ——)

- Newman's axioms fail to hold for λ -calculus (Schroer)
- Newman's axioms do hold for CL (OTRSs; parallel reduction ——)
- 1-ra(c)s axiomatise orthogonality; entailed (for —++-) by Newman's axioms

- Newman's axioms fail to hold for λ -calculus (Schroer)
- Newman's axioms do hold for CL (OTRSs; parallel reduction ——)
- 1-ra(c)s axiomatise orthogonality; entailed (for →→) by Newman's axioms
- orthogonality (least upperbounds) stronger than confluence (upperbounds)

- Newman's axioms fail to hold for λ -calculus (Schroer)
- Newman's axioms do hold for CL (OTRSs; parallel reduction ——)
- 1-ra(c)s axiomatise orthogonality; entailed (for →→) by Newman's axioms
- orthogonality (least upperbounds) stronger than confluence (upperbounds)
- every OTRS \mathcal{T} induces 1-ra (on $\longrightarrow_{\mathcal{T}}$), but many instances:
 - known: OPRS (Bruggink), Interaction Net (yesterday), OSRS (to be completed)
 - new: orthogonal context-sensitive TRS, orthogonal normal CTRS
 - conjecture: orthogonal properly oriented right-stable 3-CTRS

programme: are ad hoc orthogonal CTRSs in literature orthogonal? go for it!

- Newman's axioms fail to hold for λ -calculus (Schroer)
- Newman's axioms do hold for CL (OTRSs; parallel reduction ——)
- 1-ra(c)s axiomatise orthogonality; entailed (for →→) by Newman's axioms
- orthogonality (least upperbounds) stronger than confluence (upperbounds)
- every OTRS $\mathcal T$ induces 1-ra (on $\longrightarrow_{\mathcal T}$), but many instances:
 - known: OPRS (Bruggink), Interaction Net (yesterday), OSRS (to be completed)
 - new: orthogonal context-sensitive TRS, orthogonal normal CTRS
 - conjecture: orthogonal properly oriented right-stable 3-CTRS
 - programme: are ad hoc orthogonal CTRSs in literature orthogonal? go for it!
- (1-)algebraic approach to reductions, conversions, residuation, ortho... (new perspective: proof order is homomorphism on conversions)

- Newman's axioms fail to hold for λ -calculus (Schroer)
- Newman's axioms do hold for CL (OTRSs; parallel reduction ——)
- 1-ra(c)s axiomatise orthogonality; entailed (for →→) by Newman's axioms
- orthogonality (least upperbounds) stronger than confluence (upperbounds)
- every OTRS \mathcal{T} induces 1-ra (on $\longrightarrow_{\mathcal{T}}$), but many instances:
 - known: OPRS (Bruggink), Interaction Net (yesterday), OSRS (to be completed)
 - new: orthogonal context-sensitive TRS, orthogonal normal CTRS
 - conjecture: orthogonal properly oriented right-stable 3-CTRS

programme: are ad hoc orthogonal CTRSs in literature orthogonal? go for it!

- (1-)algebraic approach to reductions, conversions, residuation, ortho...
- WiP: lift $\mathbb{B} \hookrightarrow \mathbb{N} \hookrightarrow \mathbb{Z}$ for 1-ras (works for bits and braids)

