
1

Term Evaluation Systems with Refinements

for Contextual Improvement

by Critical Pair Analysis

Makoto Hamana Koko Muroya

Kyushu Institute of Technology Ochanomizu University

IWC, 1st September, 2025

(based on the paper in FLOPS 2024)

2

Vefication Problem in FP

Functional program

[] ++ ys → ys

(x:xs) ++ ys → x : (xs ++ ys)

Verify equality:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

2

Vefication Problem in FP

Functional program

[] ++ ys → ys

(x:xs) ++ ys → x : (xs ++ ys)

Verify equality:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

B Inductive theorem?

2

Vefication Problem in FP

Functional program

[] ++ ys → ys

(x:xs) ++ ys → x : (xs ++ ys)

Verify equality:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

B Inductive theorem?

B Real programming languages use deterministic evaluation mecahnisms

– Call-by-value: OCaml

– Call-by-name, call-by-need: Haskell

B HO functions, polymorphsim, e.g.

map f (map g xs) = map (f ◦ g) xs

3

Vefication Problem in FP

Functional program

[] ++ ys → ys

(x:xs) ++ ys → x : (xs ++ ys)

Verify improvement:

(xs ++ ys) ++ zs ⇒ xs ++ (ys ++ zs)

B Inductive theorem?

B Real programming languages use deterministic evaluation mecahnisms

– Call-by-value: OCaml

– Call-by-name, call-by-need: Haskell

B HO functions, polymorphsim, e.g.

map f (map g xs) = map (f ◦ g) xs

4

Term Evaluation and Refinement System (TERS)

Signature Σ [] : 0, (:) : 2, (++): 2

Values Val V ::= [] | V : V

Evaluation contexts Ectx E ::= ¤ | E ++ t | V ++ E | E : t | V : E

Evaluation rules E Refinement rule R
[] ++ ys → ys (xs ++ ys) ++ zs⇒xs ++(ys ++ zs)

(x : xs) ++ ys → x : (xs ++ ys)

Q. Is R contextual improvement?

5

Term Evaluation System (TERS)

Evaluation Refinement

(l → r) ∈ E E ∈ Ectx

E[lθ] →E E[rθ]

(l⇒r) ∈ R C ∈ Ctx

C[lθ] ⇒R C[rθ]

6

Contextual Improvement

A set R of refinement rules is contextual improvement

w.r.t. a set E evaluation rules if for all contexts C,

C[s]
R

+3

k
E

¾¾6
66

66
66

66
6

C[t]

m
E

¤¤¨̈
¨̈

¨̈
¨̈

¨̈

v
Val v

′

with k ≥ m

I Difficult to prove because of universal quantification of contexts

7

Is R contextucal improvement?

Yes, by checking critical pairs between E and R

([] ++YS) ++ZS

x¡ xxxxxx

xxxxxx

""FF
FF

FF
F

[] ++ (YS ++ZS)

##GG
GGG

GG YS ++ZS

wwwwwww

wwwwwww

YS ++ZS

((X’ : XS’) ++YS) ++ZS

t| pppppppp

pppppppp

&&NNNNNNNNN

(X’:XS’) ++ (YS ++ZS)

²²

(X’:(XS’++YS))++ZS

²²
X’:(XS’ ++ (YS ++ZS))

NNNNNNNNN

NNNNNNNNN
X’:((XS’ ++YS) ++ZS)

s{ ppppppppp

ppppppppp

X’:(XS’ ++ (YS ++ZS))

8

Main Theorem [FLOPS’24, Muroya&H.]

If

1. E is deterministic (ensured by evaluation contexts)

2. R is value-invariant (a refinement of value is a value)

3. TERS (E, R) is locally coherent

then R is contextual improvement wrt E.

9

Local Coherence

s

||

E[lθ]

R
Refinement

Á&
EE

EE
EE

EE
EE

E

EE
EE

EE
EE

EE
E

E
Evaluation

zzvvvvvvvvvvv

E[rθ]

kE

²²

≥ t

m E
²²

w w
′+3

R
∗

with 1 + k ≥ m

I How to check?

10

Lemma [FLOPS’24, Muroya&H.]

A well-behaved TERS is locally coherent iff all its critical pairs are joinable.

10

Lemma [FLOPS’24, Muroya&H.]

A well-behaved TERS is locally coherent iff all its critical pairs are joinable.

Well-behaved TERS (E, R)

B Evaluation contexs are defined inductively.

B Refinement respects evaluation contexts: Ectx 3 E ⇒R E′ ∈ Ectx

B R linear (wrt non-value metavariable)

B E left-linear (wrt non-value metavariable)

B For every non-value metavariable M ,

if l[M 7→ x.¤] ∈ Ectx then r[M 7→ x.¤] ∈ Ectx .

11

Highlights

B Developed this critical pair analysis method of contextual improvement

for FO and SO TERS

B Developed tool ReCheck as an extension of SOL

B Checked various examples

– Haskell: map/map, lazy lists, diverge, · · ·

– Calculi: left-to-right call-by-value λ-calculus, call-by-need λ-calculus,

computaional λ-caluclus, effect handers

12

Example: Map/Map Fusion

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(.) f g x = f (g x)

{-# RULES

"map/map" forall f g xs. map f (map g xs) = map (f . g) xs #-}

Demo of ReCheck

13

Lazy program [Kikuchi, Sasano, Aoto, PPDP19]

(rep1) replicate(z) => []

(rep2) replicate(s(N)) => s(z) : replicate(N)

(take1) take(z, XS) => []

(take2) take(s(N), []) => []

(take3) take(s(N), X:XS) => X : take(N,XS)

(ones) ones => s(z) : ones

Refinement rule using the infinite list ones

(conj) take(N, ones) => replicate(N)

B N elements from ones is refined to N copies of s(z).

B Inductive theorem proving without SN

B ReCheck reports 2 CPs and 1 non-joinable

B Adding

take(N,s(z):ones) => replicate(N)

all joinable, then contextual improvement

14

Simulating Context-Sensitive Rewriting

Prop. Let (Σ, R, µ) be a context-sensitive TRS [Lucus’92,...] and (Σ, E, Ectx , Val)

be the correponding nondeterministic TES. We have:

t ↪→R,µ u ⇐⇒ t →E u

Idea: replacement maps µ are simulated by evaluation contexts

Example

B Context-sensitive ⇒ Term Evalation System

B µ(if) = {1} ⇔ E ::= ¤ | if(E, t1, t2) | · · ·
B µ(+) = {1, 2} ⇔ E ::= ¤ | E + t | t + E | · · · (non-determistic TES)

B µ(+) = {1, 2} ⇐ E ::= ¤ | E + t | v + E | · · · (determistic TES)

with starategy

14

Simulating Context-Sensitive Rewriting

Prop. Let (Σ, R, µ) be a context-sensitive TRS [Lucus’92,...] and (Σ, E, Ectx , Val)

be the correponding nondeterministic TES. We have:

t ↪→R,µ u ⇐⇒ t →E u

Idea: replacement maps µ are simulated by evaluation contexts

Example

B Context-sensitive ⇒ Term Evalation System

B µ(if) = {1} ⇔ E ::= ¤ | if(E, t1, t2) | · · ·
B µ(+) = {1, 2} ⇔ E ::= ¤ | E + t | t + E | · · · (non-determistic TES)

B µ(+) = {1, 2} ⇐ E ::= ¤ | E + t | v + E | · · · (determistic TES)

with starategy

I Based on this simulation, SOL 2025 (TERS evaluation, local coherence) has also

the feature of checking CS confluence I Prticipate CoCo 2025, CSR category

15

Future Work

B Alternative to (higher-order polymorphic) inductive theorem proving

B Rewriting properties on TERS: confluence, termination, etc.

B Robust Haskell’s rewrite rule verifier

B Detailed comparison with FP verifier based on SMT solver

Mochi, RCaml [Sato,Unno, Kobayashi 12,...],

Timbuk [Haudebourg, Genet, Jenen 20]

– These tools are good on problem involving interger constraints, but weak on

ones involving algebraic datatypes

– E.g. These could not verify copy(copy(N) = N) under

copy(0) = 0; copy(s(N)) = s(copy(N))

