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Vefication Problem in FP

Functional program

[] ++ ys → ys

(x:xs) ++ ys → x : (xs ++ ys)

Verify equality:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
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[] ++ ys → ys

(x:xs) ++ ys → x : (xs ++ ys)

Verify equality:
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B Inductive theorem?

B Real programming languages use deterministic evaluation mecahnisms

– Call-by-value: OCaml

– Call-by-name, call-by-need: Haskell

B HO functions, polymorphsim, e.g.

map f (map g xs) = map (f ◦ g) xs
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Vefication Problem in FP

Functional program

[] ++ ys → ys

(x:xs) ++ ys → x : (xs ++ ys)

Verify improvement:

(xs ++ ys) ++ zs ⇒ xs ++ (ys ++ zs)

B Inductive theorem?

B Real programming languages use deterministic evaluation mecahnisms

– Call-by-value: OCaml

– Call-by-name, call-by-need: Haskell
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Term Evaluation and Refinement System (TERS)

Signature Σ [ ] : 0, (:) : 2, (++): 2

Values Val V ::= [ ] | V : V

Evaluation contexts Ectx E ::= ¤ | E ++ t | V ++ E | E : t | V : E

Evaluation rules E Refinement rule R
[ ] ++ ys → ys (xs ++ ys) ++ zs⇒xs ++(ys ++ zs)

(x : xs) ++ ys → x : (xs ++ ys)

Q. Is R contextual improvement?
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Term Evaluation System (TERS)

Evaluation Refinement

(l → r) ∈ E E ∈ Ectx

E[lθ] →E E[rθ]

(l⇒r) ∈ R C ∈ Ctx

C[lθ] ⇒R C[rθ]
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Contextual Improvement

A set R of refinement rules is contextual improvement

w.r.t. a set E evaluation rules if for all contexts C,
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I Difficult to prove because of universal quantification of contexts
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Is R contextucal improvement?

Yes, by checking critical pairs between E and R
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Main Theorem [FLOPS’24, Muroya&H.]

If

1. E is deterministic (ensured by evaluation contexts)

2. R is value-invariant (a refinement of value is a value)

3. TERS (E, R) is locally coherent

then R is contextual improvement wrt E.
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Local Coherence
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I How to check?
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Lemma [FLOPS’24, Muroya&H.]

A well-behaved TERS is locally coherent iff all its critical pairs are joinable.



10

Lemma [FLOPS’24, Muroya&H.]

A well-behaved TERS is locally coherent iff all its critical pairs are joinable.

Well-behaved TERS (E, R)

B Evaluation contexs are defined inductively.

B Refinement respects evaluation contexts: Ectx 3 E ⇒R E′ ∈ Ectx

B R linear (wrt non-value metavariable)

B E left-linear (wrt non-value metavariable)

B For every non-value metavariable M ,

if l[M 7→ x.¤] ∈ Ectx then r[M 7→ x.¤] ∈ Ectx .
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Highlights

B Developed this critical pair analysis method of contextual improvement

for FO and SO TERS

B Developed tool ReCheck as an extension of SOL

B Checked various examples

– Haskell: map/map, lazy lists, diverge, · · ·

– Calculi: left-to-right call-by-value λ-calculus, call-by-need λ-calculus,

computaional λ-caluclus, effect handers
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Example: Map/Map Fusion

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(.) f g x = f (g x)

{-# RULES

"map/map" forall f g xs. map f (map g xs) = map (f . g) xs #-}

Demo of ReCheck
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Lazy program [Kikuchi, Sasano, Aoto, PPDP19]

(rep1) replicate(z) => []

(rep2) replicate(s(N)) => s(z) : replicate(N)

(take1) take(z, XS) => []

(take2) take(s(N), []) => []

(take3) take(s(N), X:XS) => X : take(N,XS)

(ones) ones => s(z) : ones

Refinement rule using the infinite list ones

(conj) take(N, ones) => replicate(N)

B N elements from ones is refined to N copies of s(z).

B Inductive theorem proving without SN

B ReCheck reports 2 CPs and 1 non-joinable

B Adding

take(N,s(z):ones) => replicate(N)

all joinable, then contextual improvement
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Simulating Context-Sensitive Rewriting

Prop. Let (Σ, R, µ) be a context-sensitive TRS [Lucus’92,...] and (Σ, E, Ectx , Val)

be the correponding nondeterministic TES. We have:

t ↪→R,µ u ⇐⇒ t →E u

Idea: replacement maps µ are simulated by evaluation contexts

Example

B Context-sensitive ⇒ Term Evalation System

B µ(if) = {1} ⇔ E ::= ¤ | if(E, t1, t2) | · · ·
B µ(+) = {1, 2} ⇔ E ::= ¤ | E + t | t + E | · · · (non-determistic TES)

B µ(+) = {1, 2} ⇐ E ::= ¤ | E + t | v + E | · · · (determistic TES)

with starategy
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B Context-sensitive ⇒ Term Evalation System

B µ(if) = {1} ⇔ E ::= ¤ | if(E, t1, t2) | · · ·
B µ(+) = {1, 2} ⇔ E ::= ¤ | E + t | t + E | · · · (non-determistic TES)

B µ(+) = {1, 2} ⇐ E ::= ¤ | E + t | v + E | · · · (determistic TES)

with starategy

I Based on this simulation, SOL 2025 (TERS evaluation, local coherence) has also

the feature of checking CS confluence I Prticipate CoCo 2025, CSR category



15

Future Work

B Alternative to (higher-order polymorphic) inductive theorem proving

B Rewriting properties on TERS: confluence, termination, etc.

B Robust Haskell’s rewrite rule verifier

B Detailed comparison with FP verifier based on SMT solver

Mochi, RCaml [Sato,Unno, Kobayashi 12,...],

Timbuk [Haudebourg, Genet, Jenen 20]

– These tools are good on problem involving interger constraints, but weak on

ones involving algebraic datatypes

– E.g. These could not verify copy(copy(N) = N) under

copy(0) = 0; copy(s(N)) = s(copy(N))


