CONFLUENCE OF OO1- AND 101-INFINITARY λ -CALCULI BY LINEAR APPROXIMATION

Rémy Cerda and Lionel Vaux Auclair IWC 2025, Leipzig, 2 September 2025

INFINITARY λ-CALCULI

STRICT AND LAZY EVALUATION

Head reduction reduces head redexes

$$\lambda \vec{x}.(\lambda y.P)QM_1...M_n$$

unless we see a head normal form (HNF)

$$\lambda \vec{x}.yM_1...M_n$$
.

The full evaluation of *M* is given by its

$$\mathsf{BT}(M) := \left\{ \begin{array}{ll} \lambda \vec{x}. y \mathsf{BT}(M_1) \dots \mathsf{BT}(M_n) \\ & \text{if } M \longrightarrow_{\beta}^* \mathsf{HNF,} \\ \bot & \text{otherwise.} \end{array} \right.$$

STRICT AND LAZY EVALUATION

Head reduction reduces head redexes

$$\lambda \vec{x}.(\lambda y.P)QM_1...M_n$$

unless we see a head normal form (HNF)

$$\lambda \vec{x}.yM_1...M_n$$
.

The full evaluation of M is given by its Böhm tree

$$\mathsf{BT}(M) := \left\{ \begin{array}{ll} \lambda \vec{x}. y \mathsf{BT}(M_1) \dots \mathsf{BT}(M_n) \\ & \text{if } M \longrightarrow_{\beta}^* \mathsf{HNF}, \\ \bot & \text{otherwise.} \end{array} \right. \quad \mathsf{LLT}(M) := \left\{ \begin{array}{ll} \lambda x. \mathsf{LLT}(M') & \text{if (...),} \\ y \mathsf{LLT}(M_1) \dots \mathsf{LLT}(M_n) & \text{if (...),} \\ \bot & \text{otherwise.} \end{array} \right.$$

Weak head reduction reduces weak head redexes

$$(\lambda y.P)QM_1...M_n$$

unless we see a weak head normal form (WHNF)

$$\lambda x.M'$$
 or $yM_1...M_n$.

The full evaluation of M is given by its Lévv-Longo tree

$$LLT(M) := \begin{cases} \lambda x.LLT(M') & \text{if (...),} \\ yLLT(M_1) ... LLT(M_n) & \text{if (...),} \end{cases}$$

A REFORMULATION IN INFINITARY λ-CALCULI

Consider **001-infinitary λ⊥-terms**:

$$\frac{P \in \Lambda_{\perp}^{001}}{\lambda x. P \in \Lambda_{\perp}^{001}} \qquad \frac{P \in \Lambda_{\perp}^{001}}{PQ \in \Lambda_{\perp}^{001}} \qquad \frac{P \in \Lambda_{\perp}^{001}}{Q \in \Lambda_{\perp}^{001}} \qquad \frac{Q \in \Lambda_{\perp}^{001}}{Q \in \Lambda$$

together with **001-infinitary** $\beta \perp$ -reduction:

$$\longrightarrow_{\beta\perp} := \longrightarrow_{\beta} + \{M \longrightarrow \bot \mid M \text{ has no HNF} \} + \text{lifting to contexts}$$

$$\frac{M \longrightarrow_{\beta_{\perp}}^{*} N}{M \longrightarrow_{\beta_{\perp}}^{001} N} \qquad \frac{M \longrightarrow_{\beta_{\perp}}^{*} \lambda x.P \quad P \longrightarrow_{\beta_{\perp}}^{001} P'}{M \longrightarrow_{\beta_{\perp}}^{001} \lambda x.P'} \qquad \frac{M \longrightarrow_{\beta_{\perp}}^{*} PQ \quad P \longrightarrow_{\beta_{\perp}}^{001} P'}{M \longrightarrow_{\beta_{\perp}}^{001} P'Q'}$$

Theorem

[KKSdV'97]

 $\longrightarrow_{\beta\perp}^{\infty}$ is confluent, and BT(M) is the unique infinitary $\beta\perp$ -nf of M.

A REFORMULATION IN INFINITARY λ-CALCULI

Consider 101-infinitary λ⊥-terms:

$$\frac{P \in \Lambda_{\perp}^{101}}{x \in \Lambda_{\perp}^{101}} \qquad \frac{P \in \Lambda_{\perp}^{101}}{\lambda x. P \in \Lambda_{\perp}^{101}} \qquad \frac{P \in \Lambda_{\perp}^{101}}{PQ \in \Lambda_{\perp}^{101}} \qquad \frac{1}{\bot \in \Lambda_{\perp}^{101}}$$

together with 101-infinitary $\beta \perp$ -reduction:

$$\longrightarrow_{\beta\perp} := \longrightarrow_{\beta} + \{M \longrightarrow \bot \mid M \text{ has no whnf}\} + \text{lifting to contexts}$$

$$\frac{M \longrightarrow_{\beta \perp}^* N}{M \longrightarrow_{\beta \perp}^{101} N} \qquad \frac{M \longrightarrow_{\beta \perp}^* \lambda x.P}{M \longrightarrow_{\beta \perp}^{101} \lambda x.P'} \qquad \frac{P \longrightarrow_{\beta \perp}^{101} P'}{M \longrightarrow_{\beta \perp}^{101} P'} \qquad \frac{M \longrightarrow_{\beta \perp}^* PQ}{M \longrightarrow_{\beta \perp}^{101} P'Q'} \qquad \frac{M \longrightarrow_{\beta \perp}^{101} P'}{M \longrightarrow_{\beta \perp}^{101} P'Q'}$$

Theorem

[KKSdV'97]

 $\longrightarrow_{\beta\perp}^{\infty}$ is confluent, and LLT(M) is the unique infinitary $\beta\perp$ -nf of M.

LINEAR APPROXIMATION

linearity!

Linear approximation provides a nice refinement of continuous approximation by taking λ -terms to a sum of "multilinear $\hat{\lambda}$ -terms", aka resource terms:

$$s,t,... := x \mid \lambda x.s \mid s[t_1,...,t_n].$$

$$\phi(x) := x$$

$$\phi(\lambda x.P) := \lambda x.\phi(M)$$

$$\phi(PQ) := \phi(P)[\phi(Q)]$$

$$\phi(P\bot) := \phi(P)[]$$

Multilinear substitution:

$$s\langle [t_1,\dots,t_n]/x\rangle := \left\{ \begin{array}{ll} \sum_{\sigma\in \mathfrak{S}(n)} s[t_{\sigma(1)}/x_1,\dots,t_{\sigma(n)}/x_n] & \text{if $\deg_X(s)=n$} \\ \mathbf{0} & \text{otherwise.} \end{array} \right.$$

Multilinear substitution:

$$s\langle [t_1,\ldots,t_n]/x\rangle \coloneqq \left\{ \begin{array}{ll} \sum_{\sigma\in\mathfrak{S}(n)} s[t_{\sigma(1)}/x_1,\ldots,t_{\sigma(n)}/x_n] & \text{if deg}_X(s)=n\\ \mathbf{0} & \text{otherwise.} \end{array} \right.$$

• Resource reduction: $(\lambda x.s)\bar{t} \longrightarrow_{r} s\langle \bar{t}/x \rangle$ + lifting to contexts and fin. sums. This relation \longrightarrow_{r} is strongly confluent and strongly normalising.

Multilinear substitution:

$$s\langle [t_1,\ldots,t_n]/x\rangle \coloneqq \left\{ \begin{array}{ll} \sum_{\sigma\in\mathfrak{S}(n)} s[t_{\sigma(1)}/x_1,\ldots,t_{\sigma(n)}/x_n] & \text{if deg}_X(s)=n\\ \mathbf{0} & \text{otherwise.} \end{array} \right.$$

• Resource reduction: $(\lambda x.s)\bar{t} \longrightarrow_{r} s\langle \bar{t}/x \rangle$ + lifting to contexts and fin. sums. This relation \longrightarrow_{r} is strongly confluent and strongly normalising.

The **Taylor expansion** of M is the set $\mathcal{F}(M) := \{s \in \Lambda_r \mid s \sqsubseteq_{\mathcal{T}} M\}$, with:

$$\frac{s\sqsubseteq_{\mathcal{T}} M}{\lambda x.s\sqsubseteq_{\mathcal{T}} \lambda x.M} \qquad \frac{s\sqsubseteq_{\mathcal{T}} M}{(s)[t_1,\dots,t_n]\sqsubseteq_{\mathcal{T}} N} \qquad \frac{s\sqsubseteq_{\mathcal{T}} M}{(s)[t_1,\dots,t_n]\sqsubseteq_{\mathcal{T}} (M)N}$$

Multilinear substitution:

$$s\langle [t_1,\ldots,t_n]/x\rangle \coloneqq \left\{ \begin{array}{ll} \sum_{\sigma\in\mathfrak{S}(n)} s[t_{\sigma(1)}/x_1,\ldots,t_{\sigma(n)}/x_n] & \text{if $\deg_X(s)=n$} \\ \mathbf{0} & \text{otherwise.} \end{array} \right.$$

• Resource reduction: $(\lambda x.s)\bar{t} \longrightarrow_{r} s\langle \bar{t}/x \rangle$ + lifting to contexts and fin. sums. This relation \longrightarrow_{r} is strongly confluent and strongly normalising.

The **Taylor expansion** of M is the set $\mathcal{F}(M) := \{s \in \Lambda_r \mid s \sqsubseteq_{\mathcal{T}} M\}$, with:

$$\frac{s \sqsubseteq_{\mathcal{T}} M}{\lambda x.s \sqsubseteq_{\mathcal{T}} \lambda x.M} \qquad \frac{s \sqsubseteq_{\mathcal{T}} M \qquad t_1 \sqsubseteq_{\mathcal{T}} N \qquad \dots \qquad t_n \sqsubseteq_{\mathcal{T}} N}{(s)[t_1,\dots,t_n] \sqsubseteq_{\mathcal{T}} (M)N}$$

• **Lifting to sets:** $\bigcup_i \{s_i\} \longrightarrow_r \bigcup_i |\mathbf{t}_i|$ whenever $\forall i, s_i \longrightarrow_r^* \mathbf{t}_i$.

LINEAR APPROXIMATION AND INFINITARY λ-CALCULUS

The big theorem of "the linear approximation of the λ -calculus":

Commutation theorem

[ER'06]

$$\mathsf{nf}_{\mathsf{r}}(\mathcal{T}(\mathsf{M})) = \mathcal{T}(\mathsf{BT}(\mathsf{M})).$$

can be improved thanks to the introduction of the infinitary λ -calculus:

Simulation theorem

[CV'23]

If
$$M \longrightarrow_{\beta \perp}^{001} N$$
 then $\mathcal{T}(M) \longrightarrow_{\mathsf{r}} \mathcal{T}(N)$.

The same results, lazily

If
$$M \longrightarrow_{\beta\perp}^{101} N$$
 then $\mathcal{T}_{\ell}(M) \longrightarrow_{r} \mathcal{T}_{\ell}(N)$.
Corollary, $\operatorname{nf}_{r}(\mathcal{T}_{\ell}(M)) = \mathcal{T}_{\ell}(\operatorname{LLT}(M))$.

But also: conversely, linear approximation entails confluence of the 001- and 101-infinitary λ -calculi.

HOW LINEARITY ACTS

An example (using a fixed-point combinator Y and $K := \lambda xy.x$):

$$YK \longrightarrow_{\beta}^{a01} K^{\omega} := K(K(K(...))) \qquad YK \longrightarrow_{\beta}^{*} (\lambda xy.xx)(\lambda xy.xx)$$

If a = 0 this is a critical pair. Confluence is restored by \perp -reductions:

$$\mathsf{K}^{\omega} \longrightarrow_{\mathsf{h}} \lambda y. \mathsf{K}^{\omega} \longrightarrow_{\perp} \bot \qquad (\lambda xy. xx)(\lambda xy. xx) \longrightarrow_{\mathsf{h}} \lambda y. \mathsf{itself} \longrightarrow_{\perp} \bot.$$

This is simulated by $\mathcal{F}(K^{\omega}) \longrightarrow_{r} \emptyset$, indeed:

$$\mathcal{F}(\mathsf{K}^{\omega}) \overset{\mathsf{ind.}}{=} \left\{ \mathsf{K}[t_1, \dots, t_n] \mid n \in \mathbf{N}, \ t_1, \dots, t_n \in \mathcal{F}(\mathsf{K}^{\omega}) \right\}$$

the base case being $K[] \longrightarrow \mathbf{0}$, hence every term in $\mathcal{F}(K^{\omega})$ vanishes by linearity.

If a = 1 everything's fine again. $O := \lambda y_0.\lambda y_1.\lambda y_2...$ is a common reduct.

CONFLUENCE FOR FREE

Theorem (uniqueness of normal forms)

For all $M \in \Lambda_{\perp}^{001}$, BT(M) is the unique normal form for $\longrightarrow_{\beta_{\perp}}$ reachable through $\longrightarrow_{\beta_{\perp}}^{001}$ from M.

Proof. Suppose there is another such normal form, denote it by *N*. Then:

$$\mathcal{F}(N) = \mathcal{F}(\mathsf{BT}(N)) = \mathsf{nf}_\mathsf{r}(\mathcal{F}(N)) = \mathsf{nf}_\mathsf{r}(\mathcal{F}(M)) = \mathcal{F}(\mathsf{BT}(M))$$

and finally N = BT(M).

Corollary (confluence). $\longrightarrow_{\beta\perp}^{001}$ is confluent on Λ_{\perp}^{001} .

The same result, lazily. $\longrightarrow_{\beta\perp}^{101}$ is confluent on Λ_{\perp}^{101} .

BEYOND 001 AND 101?

INFINITARY λ-CALCULI MODULO MEANINGLESS TERMS

A **meaningless set** is a set \mathcal{U} of λ -terms s.t.

- all the very bad terms are in \mathcal{U} ,
- u is closed under (...).

$$\longrightarrow_{\beta \perp \mathcal{U}}$$
 is \longrightarrow_{β} + $\frac{M \in \mathcal{U}}{M \longrightarrow_{\beta \perp \mathcal{U}} \perp}$ + lifting to contexts.

 $\longrightarrow_{\beta\perp\mathcal{U}}^{\infty}$ is its (111-)infinitary closure.

Theorem

 $\longrightarrow_{\beta\perp\mathcal{U}}^{\infty}$ is confluent.

Hence each M has a unique $\beta \perp_{\mathcal{U}}$ -nf, denoted by $T_{\mathcal{U}}(M)$.

This induces a normal form model.

[KOV'99, SV'11]

NO TAYLOR EXPANSION OUTSIDE THE STRICT AND LAZY CASES

Unsurprising examples:

$$\overline{\mathcal{H}\mathcal{N}} := \{M \in \Lambda^{\infty} \mid M \text{ has no HNF}\}$$

$$T_{\overline{\mathcal{H}\mathcal{N}}} = BT$$

$$\overline{\mathcal{W}}\mathcal{N}$$

$$\overline{\mathcal{WN}} := \{M \in \Lambda^{\infty} \mid M \text{ has no whnf}\}$$

$$T_{\overline{WN}} = LLT$$

NO TAYLOR EXPANSION OUTSIDE THE STRICT AND LAZY CASES

Unsurprising examples:

$$\begin{split} \overline{\mathcal{H}\mathcal{N}} &:= \{ M \in \Lambda^\infty \mid M \text{ has no HNF} \} & \overline{\mathcal{W}\mathcal{N}} &:= \{ M \in \Lambda^\infty \mid M \text{ has no whnf} \} \\ T_{\overline{\mathcal{H}\mathcal{N}}} &= BT & T_{\overline{\mathcal{W}\mathcal{N}}} &= LLT \end{split}$$

One more corollary. LLT : $\Lambda^{\infty} \to \Lambda^{\infty}$ (and similarly BT) is Scott-continuous.

Proof.

For all directed D, observe that $\mathcal{T}(\bigsqcup D) = \bigcup \mathcal{T}(D)$.

Conclude using this and Commutation.

NO TAYLOR EXPANSION OUTSIDE THE STRICT AND LAZY CASES

Unsurprising examples:

$$\begin{split} \overline{\mathcal{H}}\overline{\mathcal{N}} &:= \{ M \in \Lambda^\infty \mid M \text{ has no hnf} \} & \overline{\mathcal{W}}\overline{\mathcal{N}} &:= \{ M \in \Lambda^\infty \mid M \text{ has no whnf} \} \\ T_{\overline{\mathcal{H}}\overline{\mathcal{N}}} &= BT & T_{\overline{\mathcal{W}}\overline{\mathcal{N}}} &= LLT \end{split}$$

One more corollary. LLT : $\Lambda^{\infty} \to \Lambda^{\infty}$ (and similarly BT) is Scott-continuous.

Proof.

For all directed D, observe that $\mathcal{F}(\bigsqcup D) = \bigcup \mathcal{F}(D)$.

Conclude using this and Commutation.

Theorem. $T_{\mathcal{U}}$ is Scott continuous only when \mathcal{U} is $\overline{\mathcal{HN}}$ or $\overline{\mathcal{WN}}$. [SV'05]

Hence there is no (reasonable) Taylor expansion for more than BTs and LLTs!

WHY I AM PRESENTING THIS

- Linearity makes confluence very easy...
 but linear approximation is very strong/constrained
 so maybe it is not such a great general technique for proving confluence •
- - · η
 - probabilistic, quantum, algebraic λ-calculi
 - Λµ-calculus
 - process calculi (in particular the very general one by [DM'24])

and the connection between infinitary rewriting and approximation techniques is under-exploited

REFERENCES I

- Cerda, Rémy (2024). "Taylor Approximation and Infinitary λ-Calculi". Theses. Aix-Marseille Université. URL: https://hal.science/tel-04664728.
- Cerda, Rémy and Lionel Vaux Auclair (2023). "Finitary Simulation of Infinitary β-Reduction via Taylor Expansion, and Applications". In: Logical Methods in Computer Science 19 (4). DOI: 10.46298/LMCS-19(4:34)2023.
- Dufour, Aloÿs and Damiano Mazza (2024). "Böhm and Taylor for All!" In: 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). DOI: 10.4230/LIPICS.FSCD.2024.29.
- Ehrhard, Thomas and Laurent Regnier (2006). "Böhm Trees, Krivine's Machine and the Taylor Expansion of Lambda-Terms". In: Logical Approaches to Computational Barriers. Ed. by Arnold Beckmann et al. Berlin, Heidelberg: Springer, pp. 186–197. DOI: 10.1007/11780342_20.

REFERENCES II

- Kennaway, Richard, Jan Willem Klop, et al. (1997). "Infinitary lambda calculus". In: Theoretical Computer Science 175.1, pp. 93–125. DOI: 10.1016/S0304-3975(96)00171-5.
- Kennaway, Richard, Vincent van Oostrom, and Fer-Jan de Vries (1999).
 "Meaningless Terms in Rewriting". In: The Journal of Functional and Logic Programming 1999.1. URL: https://www.cs.le.ac.uk/people/fdevries/fdv1/Distribution/meaningless.pdf.
- Severi, Paula and Fer-Jan de Vries (2005). "Continuity and Discontinuity in Lambda Calculus". In: Typed Lambda Calculi and Applications (TLCA 2005), pp. 369–385. DOI: 10.1007/11417170_27.
- (2011). "Weakening the Axiom of Overlap in Infinitary Lambda Calculus". In: 22nd International Conference on Rewriting Techniques and Applications (RTA 2011), pp. 313–328. DOI: 10.4230/LIPICS.RTA.2011.313.